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GENERAL GEOMETRY PIC FOR MIMD •
COMPUTERS: FINAL REPORT

James W Eastwood, Wayne Arter
and Roger W Hockney 0

June 1993

SUMMARY
The objectives of thl work programme specified in thf Proposal[./J. namely
the

(i) derivation of MLIMD oriented algorithms in general curvilinears.

(ii) development of a 2-D multiblock benchmarking computer program. and

(ii?) execution of benchmarking computations

have all been achieved. The conclusion from the study is that the proposed
methods will efficiently use MIMD computers in the design and fraluation of 0
HPM sources with complex geometries. When implkmented on a large parallel
computer, the general geometry PIC schemes will allow hitherto unattainable
accuracies and system sizes to be modelled.

1 Introduction

The work described in this Final Report sumniarises the work undertaken
in the research projeiL sponsored by the Air Force Office of Scientific Re-
search (AFSC) under Contract F49620-92-C-0035. "(;eneral Geometry PIC S
Algorithms and Software for Distributed Memory MIMD Computers'. The
objectives of the work programme of this Contract are described in the pro-
posal [3]

J W Eastwood, A Proposal to Develop General geometry PIC Algorithms
and Softwuare for Distributed Memory MIMD Computers, RP363. Culham
Laboratory, Nov 1991.

These objectives may be summarised as

"* the derivation of MIvID orientated algorithms in general curvilinears. S

"• the development of a 2-D multiblock benchmarking computer program,

"* benchmarking computations.

S

. 1
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The approach proposed, and successfully implemented uses

"* the 'Virtual Particle' derivation method [2] applied to tensor field com-
ponents,

"* a multiblock spatial decomposition applied to both fields and particles, 0

"* transfinite interpolation subdivision of the curvilinear quadrilateral multi-
blocks into quadrilateral elements,

"* indirect ("glue patch") addressing between multiblocks, and logical
square mesh (i,j) node addressing within blocks.

The programme of work was divided into four Tasks:

Task 1 Prepare a Report containing the derivation and statement of the
general geometry electromagnetic particle in cell algorithms to be im-
plemented in the 2-D benchmark program.

Task 2 Develop the single block solver software modules for:

(i) explicit time stepping of Maxwell's equations. S

(ii) explicit particle time stepping.

(iii) glue patch transformations.

Task 3 Develop the 2-D multiblock benchmarking program.

Task 4 Perform demonstration test runs on the Intel computer at Phillips
Laboratory.

These Tasks and their outcome are described in detail in the following four
Sections. •

In addition to the Final Report. Culham undertook to supply (subject to
IPR conditions specified in [31) a final version of the software and test input
and output data sets. These have already been delivered and installed on
computers at Phillips Laboratory. Conclusions and recommendations from
the work undertaken on this Contract are described in the final Section.

Whilst the immediate goals of the work on this Contract are Tasks 1-4
listed above, a broader view has been taken in treating them as steps towards
the ultimate practical realisation of state-of-the-art simulation software for
three dimensional configurations. The software is intended primarily to aid •
in the design and interpretation of HPM sources and power transmission
systems. although the fundamental nature of the core software is such that
it may be of utility in other computational electromagnetic applications.

2 0
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2 Task 1: Algorithm Derivation 0

r The physics, numerical analysis, software design, the impact of contemporary
computer architecture, and the eventual need to extend to three dimensions
have all been taken into account in the algorithm derivation and in the design
and implementation of the software. The apploach adopted is that which we
believe most effectively realises the underlying aim of the work, and has the
following features:

* a variational finite element derivation, using tensor fields in the action 0
* integral formulation of Maxwell's equations,

9 covariant (E and H) and contravariant (d and b) electromagnetic field
components.

* orthogonal coordinates where appropriate. but general curvilinear co-
ordinates where the extra freedom is needed.

9 multiblock spatial decomposition of complex domains,

a indirect (-glue patch") addressing between blocks.

9 regular (i.j./k) cubic lattice addressing within blocks.

* transfinite interpolation subdivision of curvilinear hexahedral blocky.
into finite elements.

e compact metric storage. and

• data and algorithm organisation optimised to exploit distributed mem-
ory MIMD computers.

To design software, which not only meets the objectives (see above) but
also provides the basis for a general curvilinear field solver with multiblock de-
composition amenable to distributed memory MINID implementation. has de-
manded extensive numerical analysis, software engineering and benchmark-
ing. In the course of this work, a number of problems have been encountered:
for example. in discretising the constitutive relationships and boundary con-
ditions, in defining an effective data storage scheme for handling the metric
special cases, in designing for high computational intensity in MIMD multi-
block implementations. and so forth. All problems encountered have been
substantially overcome.

A detailed discussion of the algorithm derivation and statement is given
in the Task I Report

3I .



RFFX(93)56 MIIMD PIC Final Report

J W Eastwood, R W Hockney and W Arter, General Geometry PlC for 0
AI.IMD Computers RFFX(92)52. Culham Laboratory, August 1992

which is appended to the present Report as Annex 1.

3 Task 2: Uniblock Solver Software 0

The beneral geometry VP electromagnetic PIC derivation described in Annex
1 reduces the problem of modelling a complex shaped device into that of
computing fields and particle dynamics in a set of rectangular blocks (in
curved space) with boundary conditions applied only at the surfaces of tile
blocks. Boundary conditions are implemented by copying data from the
source block surfaces (currents for Ampere's Law, electric fields for Faraday's
Law and particle coordinates for the equations of motion) to the source glue
patch buffers, performing appropriate transformation of data in the gluepatch
buffers, and then copying the results from the target gluepatch buffers to the
target blocks.

Each uniblock of the multiblock decomposition behaves as an indeper-
dent computation with boundary conditions provided by surface boundary
condition patches or gluepatches. Tliis independence is reflected in the cod-
ing of the uniblock subprograms, which are written in terms of the local block
indexing and local position coordinates.

The objective of Task 2 was to write Fortran code for the uniblock cal-
culations. These subprograms may be divided as follows:

(i) elect romagnetic routines

(ii) electromagnetic boundary condition routines

(iii) particle routines

(iv) particle boundary condition routines.

Annex 2 lists the documentation modules from the Fortran benchmark
program delivered to Phillips Laboratory. The uniblock subprograms de-
scribed below are provided as part of the benchmark program. The OLYM-
PUS conventions for notation, layout and documentation [1] have been fol-
lowed. Subprograms with the same names as those in the prototypical
timestepping program CRONUS have the same function as the CRONUS
dummy counterparts.

In referring to subprograms in the following subsection the notation (c.s)name
will be used. so for example (2.20) AMPERE will refer to the main calcula-

tion (class 2) routine, subroutine number 20, which is stored in file c2s20.f.

40
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The contents of file c2s20.f will be subroutine AMPERE, which computes tile

displacement current (cf documentation file INDSUB.doc in Annex 2). Sim-
ilarly. common blocks have their group and member numbers; for example.
[C4.5] COMADP is a member of group 4 (housekeeping) blocks with name
COMADP, etc.

3.1 Electromagnetic routines

The principal routines for advancing Maxwell's equation in each uniblock
6

(2.20) AMPERE which computes scaled contravariant displacement currents.
d'. according to eq(4.6.5) of Annex 1.

(2.21) FARADA which updates scaled contravariant magnetic fields, V. ac-
cording to eq(4.6.S) of Annex 1. •

(2.22) GBTOH which computes covariant magnetic field intensities. H_. from
b' (eq(4.5.1) of Annex 1).

(2.23) GDTOH which computes covariant electric fields. E,. from d' (eq(4.5.2)
of Annex 1). 0

Input and output to these routines is via formal parameters. Included
common blocks are [C1.9] COMDDP and [C4.51 COMADP. The first of these is
to give access to OLYMPUS development and diagnostic parameters for code
testing. and the second contains symbolic names of addressing constants. The
use of symbolic addressing constants was adopted to allow dimensionality and 6
data storage layout to be changed without recoding the uniblock routines.

The remaining uniblock electromagnetic routines are general mesh ma-
nipulation routines, applicable to any vector field defined on the element net.
These routines perform the following functions. 0

(1.21) NILVEC sets all nodal amplitudes of a vector field on the element net
to zero

(1.20) SETVEC sets nodal amplitudes to a constant vector
0

(2.26) ADDVEC adds two vector fields together

(2.34) CPYVEC copies one vector field to another

(2.36) AVEVEC averages two vector fields.

Specifications of the input to and output from these electromagnetic rou-
tines of the uniblock solver software are given in the nine subsections of
Appendix A.I. These routines can be used as they stand for both two and
three dimensional calculations.

0
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3.2 Electromagnetic boundary condition routines 0

The uniblock electromagnetic boundary condition routines (2.25) BCOPAT
and (2.28) BCONE are used respectively to apply external boundary condi-
tions on the displacement field and electric field. The present versions of
these routines can apply conductor, applied field and isotropic resistive wall
boundary conditions for element nets which are orthogonal at the external
boundaries. The routines are written to work in both two and three dimen-
sions.

Internal boundary conditions between blocks are handled by the gluepatch
routine (2.30) GLUEIO. This routine woiks for othogonal and non-orthogonal
in both two and three dimensions.

A specification of the input to and output from the uniblock electro-
magnetic boundary condition routines listed above is given in the Appendix.
subsection A.2. 0

3.3 Particle routines

The principal particle integration routines are

(2.11)MOVCUR . which updates the particle position coordinates and assigns
current to the element net according to eqs(5.2.9)-(5.2.12) of Annex I

(2.12)ACCEL . which updates particle momenta using the scheme described
in Section 5.4.2 of Annex 1. •

MOVCUR calls subsidiary routine MERGE in computing the location of
the virtual particles, and calls ASSCUR to assign current from the particles
to the element net.

A specification of the input to and output froin these uniblock particle
routines is given in the Appendix. subsection A.3. The first subprogram
listed therein. (2.10) SETCUR reinitialises the current accumulation arrays
each timestep.

3.4 Particle boundary condition routines

Internal particle boundary conditions and particle absorption at external
boundaries are handled by the gluepatch routine (2.14)PARTIO of the multi-
block test program (cf Section 3). Particle injection is handled by (2.19) S
INJECT, which uses the uniblock routine (2.18)QSHARE to find charge den-
sity at cathode surfaces and (2.13)EMITEL to emit electrons from the cathode
surface using a space charge limited emission algorithm.

6 .
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L Table 1: Global Addrtssi9g Arrays

Name Meaning
MPESTB Processor to process pointer table
MPORTB Process to processor pointer table
MBKPES Block to process pointer table

MPRBLK/NXTBLK Process to block pointer header and link tables
MPATBK Patch to block pointer table

MBKPAT/NXTPAT Patch to block pointer header and link tables
MBKTYP Block to blocktype pointer table
MBCPBK Boundary condition (bc) patch to block pointer table

MBKBCP/NXTBCP Block to bc patch pointer header and link tables
MPATBK Gluepatch to block pointer table

MBKPAT/NXTPAT Block to gluepatch pointer header and link tables

A specification of the i n put to and output from thyee uniblock particle
boundary condition routines is giv'en in the Appendix. subsection A.-1.

4 Task 3: Multiblock Test Program *

The Multiblock Test Program provides the testbed in which tihe uniblock
modules described in the previous section are combined with control and
message passing routines to form the MIMI)-PIC test program.

The main control routine which calls the , trious uniblock routines is S
(2.1)STEPON. STEPON calls further routines (2.24)BCSURD. (2.26)BCSURE
and ( 2.29)BCSYM to control the application of external electromagnetic
boundary conditions. and (2.32)BLKIO to handle tihe transformation and
copying of electromagnetic gluepatch data to and from the gluepatch buffer
arrays. Particle data is copied to and from gluepatch buffer arrays by 0
(2.14)PARTIO. Particle injection boundary conditions are controlled by (2.19)INJECT.

4.1 Data Organisation

Global and local data organisation in the program both follow the scheme
outlined in Annex 1. Table 1 summarises the array names for pointer ta-
bles connecting processor to process. process to block. block to blocktvpe.
block to boundary patch and block to gluepatch. In most cases there are
two-way pointers, and in instances where two names are given, pointers are 0
implemented as linked lists.

Global dat2 have the same values on all processes. Local data have differ-
ent values on different processes. Local data includes the gluepatch to buffer

7
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pointers (MGLTOB and MBTOGL), field and particle addressing data, and 0
the field and coordinate values.

Field data for each uniblock is mapped onto one dimensional Fortran
arrays as described in Section 7.4 of Annex 1. Uniblock subprograms (cf
Section 3) are written relative to origin 1 in the field and addressing arrays.
The relevant origin location in the multiblock arrays for each block is passed
to the subprograms by calling with the appropriate offsets. This can be seen
by inspection of (2.1)STEPON. For example

C
CL 1.2 clear current arrays

CALL SETCUR(
+ LBLAS (LOBLAS(IBTYPE)),
+ C (LORFBL(IBLOCK)) )

C

passes the block addressing information in array LBLAS for block type IB-
TYPE. anrd sets currents C to zero for block IBLOCK.

Similarly. particle address and coordinates are stored in one dimensional
arrays LPARAS and COORDS. respectively. Offsets for each block are passed
to unibiock routines b\ calling with tbe pointer to the location of origins of
coordinate (LOCOOR) to the current block, for example

C
C move

CALL MOVCUR(O,
* LPARAS(LOPARA(IBLOCK)),
+ SPATR,
+ LECOVA(1,LOECOA(IBTYPE)),
+ ECOV(LOECOV(IBTYPE)),
+ COORDS(LOCOOR(IBLOCK)),
+ GPATI, S
+ GPATI,
+ LBLAS (LOBLAS(IBTYPE)),
+ C (LORFBL(IBLOCK)))

C

For further information on the data storage, see Annex 2 and the doru-
mented program listing.

"8 O
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1 4.1.1 Program Structure

The benchmark program, MIMD-PIC. follows the canonical notation and
structure of the skeleton initial value/boundary value timestepping program
CRONUS [1]. Program flow is controlled by (0.3)COTROL, the main timestep[ loop is controlled by (2.1)STEPON and output is controlled by (3.1)OUTPUT.

The decimal numbered subsections of (2.1)STEPON reflect the steps of[ the timestep loop:-

(1) move particles and compute currents 0
loop blocks or process ( 1. 1)

(1.2) initialise current (SETCUR)
(1.3) inject particles (INJECT)
(1.4) move and accumulate current (MOVCUR)
(1.5) sort lost particles to gluepatch buffer (PARTIO) 0

fe nd loop

loop to empty gluepatch buffers
(1.6) exchange particles (XPART)
(1.7) complete move for exchanged particles
loop blocks on processmove particle from buffer to block (MOVCUR)

Sd sort lost particles to gluepatch buffer (PARTIO)
-rd loop

f nid loop

(2) update displacement field
loop blocks on process

I (2.11 compute H fromn b (GBTOH)
(2.2) compute displacemenet current (AMPERE)
(2.3) load gluepatch buffers (BLKIO)

I �rid loop
(2.4) exchange gluepatch buffers (XPATCH)
loop blocks on process

(2.5) copy gluepatches to blocks (BLKIO)
f nd loop 0I (2.6) apply boundary conditions to d (BCSYM, BCSURD)

(3) compute new E field
loop blocks on process

(3.1) compute E from d (GDTOE) 0
(3.2) load gluepatch buffers (BLKIO)

rnd loop
(3.3) exchange gluepatch buffers (XPATCH)

9 0
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loop blocks on process
(3.4) copy glue patches to blocks (BLKIO)

end loop
(3.5) apply boundary conditions to E (BCSYM, BCSURE)

(4) advance magnetic fields 0
loop blocks on process

save old b (CPYVEC)
advance b (FARADA)
compute time centred b (AVEVEC)

(5) accelerate particles
ACCEL

fnd loop

The numbering in this sunmary of the timestep loop corresponds to the
section numbers in (2.1) STEPON. and the names in brackets are the sub-
program namies.

4.2 Test Cases

The source. executables and test data for the workstation version of MIMD-
PIC has been installed in directory may12.don the SUN workstation ppwsO4
at Phillips Laboratory. This version differs primarily from thie iPSC version in l
that calls to Intel interprocessor communications routines have been replaced
by dummies. To execute the program using one of the test datasets. e.g.
h~st17.dat type

xmimdpic test17.dat S

If the xghost library has been linked into xmimdpic. then a window with
graphics output will appear. otherwise only printer output file otstl7pl,

restart binary file r-testl7pl and graphics output file gt1stl7p) will be pro-
duced. The graphics file may be viewed using the GHOST interactive viewer
program xghost.5].

The test data sets included in the directory mayl2.d are

testl.dat coded exchange test S
tcst'2.dat current and d array
tesI3.dal transmission line test/constant d
Iest4.dat transmission line test/travelling wave

10
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testS.dat 3-D coded current array

test6.dat 3-D field test
test7.dat particle mover test
test8.dat particle mover test
test9.dat periodic mover test
testlO.dat cyclotron orbit
testll.dat cyclotron with E x B
test12.dat current assignment check
testl3.dat short MITL test
testl4.dat longer MITL
test15.dat Further E x B test
test16.dat 1 cavity device/no particle
testl7.dat 5 cavity MILO/few particles
testl8.dat 4 cavity MILO/50 steps
test19.dat Symmetry bc EM transmission line
test2O.dat test error in G2LMAT
t1st21.dat particle reflection bc test
tfstI22.dat uniform d start 5 cavity milo/sheat plot
test23.dat I block MILO test
hst24.dat 20 block MILO test/5000 steps
tfst25.dat 20 block/finer mesh MILO 15.000 steps
test26.dat 04 block MILO
test.3ldot 3-D version of test I
test.13.dat 3-D version of test :3
test34.dat :3-D version of test 4

The input and output dataset for these test cases are in directory mayl2.d
under user eastiwood on the ppwsO4R machine, input dataset testnn.dat has a
corresponding output file o-testnnpi. GHOST graphical output file giestnnpi
and restart file r-tstnnpl. (The suffix 'pl' is for a one processor run. Output
from m processor runs on the iPSC have suffices pm:r for the rth processor
output from an m processor hypercube).

The input and output datasets are largely self explanatory. so will not be
described further here. The graphical output files may be viewed either using
the GHOST interactive X-window viewer zghost. or by converting them to S
(say) Postscript files and printing them.

5 Task 4: iPSC Parallel Benchmarking

The parallel implementation of the multiblock program differs only in the
handling of the gluepatch buffer exchange between uniblocks. In the se-
rial code. gluepatch exchange involves only memory to memory copying.

11 0•
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Figure 1: A snapshot of the radial fields and electron distributionsfrom the
MILO test run test25. The electric fields are measured along lines parallel 0
to the axis of the device through the centre of the drift space (green/black
curve), and half way up the cavities (red/blue curve). Fields are in units of
applied field, and distance is in element widths.
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The parallel code uses memory to memory copying for gluepatches between
uniblocks on the same processor, and uses interprocessor message passing
between blocks on different processors. The gluepatch exchange subprogram
(2.31)XPATCH contains explicit calls to iPSC routines, and in the serial ver-
sion, these routines are replaced by dummies (cf file cpsl.fi.

The test cases described below were chosen firstly to show that the parallel
implementation worked correctly, and secondly to evaluate the performance
enhancements that could be achieved by parallel processing.

5.1 Test problems 0

The test problems for the parallel benchmarking were chosen subject to the
constraints that

" they use simple geometrical elements. since the general metric element 0
computation routines have not been incorporated in the benchmark
soft ware.

" they reflect realistic engineering types of calculations where the do-
mains are not simply rectangles, and the particle filling is nonuniform, 0

" the results can be cross checked with those from existing serial codes.

These constraints led to a planar MILO configuration being chosen for the
example geometry.

Typically. MILO calculations are started from an empty device with zero
fields, and an electric field is applied at the generator boundary. Computa-
tions are then run for several tens of thousands of step. Figure 1 shows the
axial electric fields and electron distribution for one such calculation after
12,000 steps. This computation showed the same behaviour as a cross check
using the MAGIC code [6]

The two test cases for the parallel computations are the same as two of the
test cases listed in Table 1. The input datasets casel.dat and case2.dat are
the parallel computation equivalents of testl 7.dat and test24.dat, respectively.
The datasets for the parallel runs differ from the serial ones only in the
addition of an extra data input variable to specify the number of processors
to be used for the computation.

casel.dat (testl7.dat) is a small calculation example, which describes a
five cavity MILO using 12 uniblocks with coarse element nets. The 100 step 0
run follows the standard MILO startup from an empty field-free configura-
tion. Large electron superparticles are used so that by the end of the 100
step run there are less than 140 particle in the MILO. Running the profiler

13 0
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Figure 2: The streak plot of particle trajectories for "PSC run using dataset .
case 1.dat shows the correct passing of particle coordinates between uniblocks:
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on the workstation version of the code for this test case showed that the mix

of work was uncharacteristic of particle calculations. The breakdown of the
main elements of the timestep cycle was as follows:

34% PARTIO and BLKIO
25% AMPERE. GDTOE, FARADA and GBTOH 0

14% MOVCUR and ACCEL

The dominant part of the calculation cycle is the work to exchange data
between block, followed by the work in the electromagnetic field calculation.

case2.dat (test24.dat) is a medium sized calculation. It was chosen to
reflect the general characteristics of a production calculation, but in a run
which takes only a .ew (100) timesteps. This differs from the normal MILO
runs in that the device is initially filled with a nonzero electric and magnetic
field. The result it that electrons are emitted from the whole length of the
cathode, and there is a strong initial transient where the electrons fill only 0
part of the device volume. The percentages of the calcilation time taken by
the patch exchange, electromagnetic and particle parts are now

6%c PARTIO and BLKIQ
12(7( AMPERE, GDTOE, FARADA and GBTOH
73(X MOVCUR and ACCEL

This ordering of the amount of work is more typical of realistic particle
computat ions. where the part icle integration dominates. The interblock data
transfer routines are now a sniall part of the serial calculation. Since it is only
this part of the calculation which involves message passing in tile parallel
iml)lementation the scope for parallel speedup for ca.s2.dat will be much
greater than for castl.

Further cases, where the benchmark code is extended to tndertake three 0
dimensional calculations, are planned for the future. On the basis of com-
putational intensity estimates, we anticipate much greater scope for speedup
than can be achieved in two dimensions. 3-D tests would be invaluable in
evaluating the capabilities of machines such as the Intel Paragon for use in
large scale electromagnetic computations. •

5.2 Benchmark results

Case-I has been used as a validation example throughout the development
of the parallel code. because it contains particles which pass through several
blocks belonging to different processors. To demonstrate that these compli-
cated cases are being correctly computed. Fig. 2 shows the orbits of particles
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in which the colour changes as the particles are computed by different proces-
sors. Such a colour change indicates that the particle coordinates are being
correctly transferred by way of a message containing their coordinates being
sent from one processor to another. We also note that the orbits do not stop
at the non-physical boundary between the regions computed by different pro-
cessors, as would be the case if the message transfer between processors was
not operating correctly.

Figure 3 shows the scaling charcteristics of case-1 when run on an iPSC/860
with up to 16 processors, together with the ideal speedup line. The unit of
performance used is timesteps per second (tstep/s), and tile graph shows
how the performance scales for a fixed size problem as the number of proces-
sors increases. This unit of performance is to be preferred to the traditional
Speedup (ratio of p-processor performance to one processor performance).
because it retains the absolute speed of the calculation which is of more in-
terest to the user than a speedup ratio. The ideal linear speedup line is also
shown for the case with output to the cube disk and additional diagnostic
output switched on (NLREPT=T): this is the theoretical performance which
would he obtained if the performance scaled up linearly with the number of
processors. This curve will not be reached in practice because of load inibal-
ance, communication overheads, and essentially serial code that cannot be
parallelised. The latter includes any code that is repeated for convenience in
all processors. and will eventually cause the performance to saturate (Amdahl
saturation) and even subsequently decrease with tile numnber of processors.

Three curves are shown depending on whether thel printed output is re-
turned to the host (bottom two curves marked to HOST), or whether it is sent •
to the to the disks that are directly connected to the iPSC/S60 hypercube
(top curve marked to CUBE). The output is controlled by the variable NL-
REPT=T (full report) or NLREPT=F (minimal report). As already noted.
case-I is a small test calculation used in program development, and is too
small to make efficient use of a large MPP. It is not surprising, therefore. 0
that the performance scaling is poor. All curves show the onset of Amdahl
saturation. due to repeating the out put in all processors. but the importance
of using the CUBE. rather than HOST file system is evident.

Figure 4 shows the scaling behaviour for the medium sized case-2, com-
piled under both if77 (UNOPTIMISED) and if77 -O (OPTIMISEI)). The
ideal linear speedup is fitted to the optimised ca-se. The gain obtained us-
ing compiler optimisation is clearly seen. Although the performance can be
seen to fall-off from the linear speedup line, the scaling can be regarded as
reasonable for a problem of this size. Even when there are only four blocks
per processor. more than 75 per cent of the ideal linear speedup is realised.
Unless the uniblock are further subdivided, saturation for this case must be
reached by 64 processors. However. for the type of calculat ion for which this

16
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20 0
IDEAL LINEAR SPEEDUP

NLREPT=T. O/P to CUBE

15

RT

tstep 10
per NLREPT=F. O/P to HOST

5o

\NLREPT=T. O/P to HOST

0 -T -I

0 2 4 6 8 10 12 14 16

Number of Processors
Figure 3: Temporal Performance in timestep per second (tstep/s) for case-1.

software is designed. we would not expect to meet performance saturation
until several hundred processors were used. More data is required is required
for the larger cases to determine the best buffering strategy, and adapt the,
software to return the best performance. This require- ac~ess to an Intel
Paragon with at least 200 processors. and preterably more.

6 Final Remarks

The objectives of the work programme specified in the Proposal[3]. namely
the

(i) derivation of MIMD oriented algorithms in general curvilinears.

(ii) development of a 2-D multiblock benchmarking computer program, and

(iii) execution of benchmarking computations

17 0
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IDEAL LINEAR SPEEDUP
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RT

tstep 2 UNOPTIMISED
per 0
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Figure 4: Temporal Performance in timestep per second (tstep/s) for case-2.
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have all been achieved. In some aspects the results achieved have ex- 0
ceeded requirements. For instance, the uniblock routines (Section 3) and the
multiblock test program (Section 4) can already be used in their present form
for both two and three dimensional cases. Although the software is suitable
for parallel benchmarking. much work remains before it becomes a usable
tool for microwave device simulation; the initialisation is difficult to use in 0
its present form, and still lacks the subprograms to compute metric tensor
elements for general curvilinear uniblocks; also the output from the code is
quite limited. Further development and a considerable amount of validation
is required before the software can be regarded as sufficiently debugged for
routine microwave computations. 0

Most of the core timestepping routines for the three dimensional extension
of the benchmarking code are complete. Known exceptions to this are

(i) the ability to handle general curvilinear external boundary conditions

on the electromagnetic fields.

(ii) non-lumped approximat ions to the elect roiiagnet ic equations.

(iii) three dimensional space charge limited and beam emission particle
boundary conditions.

It emerged during the implementation of the particle integration routines
that a more efficient particle momentum integration may result from using
local non-orthogonal coordinates rather than local cartesians: we recommend
that the question as to which approach is most effective is resolved before 0
further extension of the particle software is undertaken.

The results of the preliminary benchmark computations showed encour-
aging speed up. even for modestly sized calculations. The present implemen-
tation bases message passing on a patch to patch basis. On machines with
high interprocessor message passing latency, further speedt up would result
from presorting the patches and performing message passing on a processor
by processor basis (cf below).

6.1 The LPM2 benchmark 0

The results reported in section 5.2 show that the benchmark version of the
new parallel code works, and can be used to test the scaling behaviour of
Massively Parallel Processors (MPPs) that may be considered for acquisition
by the USAF. both now and in the future. The most useful way of doing this 0
is to offer the benchmark (which we have called LPM2 for Local-Particle-
Mesh #2) as a component of a widely disseminated benchmark set; this will
result in performance numbers being produced by the manufacturers as a

19 .
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matter of course on all their new computers. Thus the USAF would see that
performance of one of their important class of codes quoted without having
to take any action, much in the same way that LINPACK benchmark results
currently appear.

A recent initiative by large scale computer users was taken at Super-
computing92 for exactly this purpose and has held three meetings. This 0

committee, called the ParkBench committee (Parallel Kernel Benchmarks).
aims to specify a set of public-domain benchmarks for the evaluation of par-
allel systems and MPPs that is acceptable to both the user community and
the manufacturers. This committee is currently chaired by Professor Hock-
ney, and is looking for a parallelised PIC code, which expands up to MPP 0

sized problems. In our view it would be in the long-term advantage of the
USAF to put the LPM2 benchmark code into the public domain and offer it
to fulfill this role in the ParkBench benchmark suite. If USAF is agreeable to
this action Professor Hockney will undertake to submit LPN.2 to ParkBench
and hopefully have it encorporated in the benchmark suite. 0

In order to test the behaviour of the new parallel code fully it is necessary
to run it on a real machine with several hundred processors. This should be
a Paragon. and/or competitive computer (e.g. Meiko ('S2. currently being
considered by LLL). This will determine the extent of performance saturation
which occurs with the present code. There are steps that can then be taken to
improve the performance at saturation. and to delay the onset of saturation.
However without access to a large NIPP. the timings necessary for such an
optimisation cannot be performed. W\e place high priority on obtaining such
measurements as the first stage of the proposed future work.

Early measurements on the Intel Paragon [7] show that. although the
asymptotic bandwidth of the Paragon is about eight times that of the iPSC/860.
the message startup time is about twice as long as that of the Intel iPSC/860.
Since the arithmetic processors used on the two computers are the same. the
Paragon will show improved performance over the iPS('/860 only if a few •
long rather than many short messages are sent. This puts a premium on
merging many small messages into one large one and then sorting the results
after the message has arrived. The current code does not exploit this pos-
sibility. and we recommend that one line of future development be to insert
such message merging and sorting code. 0

200
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A Appendix: Uniblock Subroutine Input and Output
Specification
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A.1 Electromagnetic routines

A.1.1 Subroutine AMPERE

External Routines

EXPERT

Intrinsic Functions

MAX
MOD

Arguments on Entry

C Real array contravariant current
H Real array covariant magnetic intensity
KBLAS integ'r array block addressing structure

Inputs Through Common

Common Block /COMADP/

MINCO Integer Mesh INCrement Origin in BLAS
MODKEY integer Mesh orthogonality and dimension key location
MOFSET Integer Mesh OFFSET location in BLAS
MSIZO Intcger Mesh SIZe Origin in BLAS
MSPACE Integerr Nesli SPACE reserved location in BLAS
MXPDIM Integer Max number of physical dimensions(=3)

Common Block /COMDDP/

NLOMT2 Logical array

Arguments of Called Routines

ICLASS integer argintevi () EXPERT
ISUB Integer• argument of EXPERT

23 0
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Arguments on Exit 0

DDOT Real array contravariant displacement current

Outputs Through Common 0

Common Block /COMADP/

NONE
0

Common Block /COMDDP/

NONE

0

0

0

0

0
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A.1.2 Subroutine FARADA 0

External Routines

EXPERT

Intrinsic Functions

MAX
MOD

Arguments on Entry

B Real array scaled contravariant magnetic field
E RIal array covariant electric tield
KBLAS I1ytf v UPrray block addressing st.'ruct ilur

Inputs Through Common

Common Block /COMADP/

MINCO Intrgcr Mesh INCrement Origin in BI.AS
MODKEY intrger Mesh orthogonality and dimension key location
MOFSET Intlgrr Mesh OFfSET location in BIAS 0
MSIZO Inteyer Mesh SIZe Origin in BLAS
MSPACE Intcger Mesh SPACE reserved location in BLAS
MXPDIM Inthger Max number of physical dimensions(=3)

Common Block /COMDDP/

NLOMT2 Logical array

Arguments of Called Routines

ICLASS Int(g9r argument of EXPERT
ISUB Int9egr argument of EXPERT

Arguments on Exit

B Rral array scaled contravariant magnetic field

25
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Outputs Through Common

Common Block /COMADP/

NONE

Common Block /COMDDP/

NONE

26, .

°0



1 "6
I J W Eastwood, R W Hackney and WV Arter RFFX(93)56

A.1.3 Subroutine GBTOH 0

c External Routines

EXPERT

Intrinsic Functions

[ MAX

MODI
Arguments on Entry

[ B Real array scaled contravariant magnetic field
GBH Real array b to H, conversion tensor

SKBLAS Integer array block addressing structure

KGBHAD Integer array GB6 - addressing structure

1Inputs Through Common

SCommon Block /COMADP/

SMINCO Inttger Mesh IN(reinent Origin in BLAS
MINCOG lnthgfr Mesh IN(vrement Origin in G addressing
MODKEY Integer Mesh orthogonality and dimension key location
MOFSET Intfgfr Mesh OFfSET location in BLAS
MSIZO Int1ger Mesh SIZe Origin in BLAS
MSPACE Integer Mesh SPACE reserved location in BLAS
MXPDIM Integer Max number of physical dimensions(=3)

I Common Block /COMDDP/

[ NLOMT2 Logical array

[ Arguments of Called Routines

ICLASS Integer argument of EXPERT
I ISUB Inleger argument of EXPERT

27 .I
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Arguments on Exit

H Real array covariant magnetic intensity

Outputs Through Common

Common Block /COMADP/

NONE

Common Block /COMDDP/

NONE

28 .
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A.1.4 Subroutine GDTOE 0

External Routines

EXPERT

Intrinsic Functions

MAX
MOD

Arguments on Entry

D Real array scaled contravariant displacement field
GED R~al array d' to E, conversion tensor
KBLAS Inttger array block addressing structure
KGEDAD Integcr array GED addressing structure

Inputs Through Common

Common Block /COMADP/

MINCO lnhg9r Mesh INCrement Origin in BLAS
MINCOG Integer Mesh INCrement Origin in G addressing
MODKEY Integer Mesh orthogonality and dimension key location
MOFSET Integer Mesh OFfSET location in BL..XS
MORIGG Integer Mesh ORIGin in G addressing
MSIZO Integer Mesh SIZe Origin in BLAS 0
MSPACE Intfgrr Mesh SPACE reserved location in BLAS
MXPDIM Integer Max number of physical dimensions(=3)

Common Block /COMDDP/

NLOMT2 Logical array

Arguments of Called Routines

ICLASS Integer argument of EXPERT
ISUB Integer argument of EXPERT

29 0
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Arguments on Exit

B Real array scaled contravariant magnetic field

Outputs Through Common

Common Block /COMADP/

NONE

Common Block /COMDDP/

NONE
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A.1.5 Subroutine NILVEC 0

External Routines

EXPERT

Intrinsic Functions

MAX
MOD

Arguments on Entry

KBLAS Int(gtr array block addressing stlructlire

Inputs Through Common

Common Block /COMADP/

MINCO Integer Mesh INCrement Origin in BL.\S
MODKEY Integtr Mesh orthogonality and dimension key location
MOFSET Integer Mesh OFfSET location in BLAS
MORIGG Inthger Mesh ORIGin in G addressing
MSIZO Intcger Mesh SIZe Origin in BLAS
MSPACE nthger Mesh SPACE reserved location in BLAS
MXPDIM Intfgur Max flunim)er of physical dimensions(=3)

Common Block /COMDDP/

NLOMT1 Logical array

Arguments of Called Routines 0

ICLASS Integer argument of EXPERT
ISUB Integer argument of EXPERT

Arguments on Exit

PV Real vector field set to zero

31
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Outputs Through Common S

Common Block /COMADP/

NONE

Common Block /COMDDP/

NONE

3 4
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A.1.6 Subroutine SETVEC 0

External Routines

EXPERT

Intrinsic Functions

MAX
MOD

Arguments on Entry

KBLAS Integer array block addressing structure
KCASE Integfr =1 for d and =2 for b fields 0
PVALS Real array 3- vector of values to which PV is set

Inputs Through Common

Common Block /COMADP/

MINCO Int(gr Mesh INCrement Origin in B1LAS
MODKEY Inhytr Mesh orthogonality and dimension key location
MOFSET inthger Mesh OFfSET location in BLAS 0
MSIZO I1tegfr Mesh SIZe Origin in BLAS
MSPACE Integer Mesh SPACE reserved location in BLAS
MXPDIM Integer Max number of l)hysical dimensions(=3)

Common Block /COMDDP/ 0

NLOMT1 Logical array

Arguments of Called Routines 0

ICLASS Integer argument of EXPERT
ISUB Integer argument of EXPERT

Arguments on Exit

PV Real array vector to be set to PVALS
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Outputs Through Common S

Common Block /COMADP/

NONE

Common Block /COMDDP/

NONE

0

34
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A.1.7 Subroutine ADDVEC 0

External Routines

EXPERT

Intrinsic Functions

MAX
MOD 

0

I Arguments on Entry

KBLAS IntIgf ir array block addressing structure
PV1 Rcal array input vector 1 0
PV2 Rtal array input vector 2I
Inputs Through CommonI °
Common Block /COMADP/

SMINCO Integ9r Meslh INCrement Origin in BI.\AS
MODKEY Intcger Mesh orthogonality and dimension key location
MOFSET Integer Mesh OFfSET location in BLAS 6
MSIZO Intfg9r Mesh SIZe Origin in BLAS
MSPACE Int9gfr Mesh SPACE reserved location in BLAS

SMXPDIM Integur Max number of physical dimensions(=3)

SCommon Block /COMDDP/ 0

NLOMT2 Logical array

Arguments of Called Routines 0

SICLASS Integer argument of EXPERT
ISUB Intiger argument of EXPERT

Arguments on Exit 0

[ PV1 Real array output vector PV: PVI + PV2

S3.5 .0
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Outputs Through Common

Common Block /COMADP/

NONE

Common Block /COMDDP/

NONE

36
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A.1.8 Subroutine CPYVEC 0

External Routines

EXPERT

Intrinsic Functions

MAX
MOD

Arguments on Entry

KBLAS Intigcr array block addressing structure
PV2 Real array input vector

Inputs Through Common

Common Block /COMADP/

MINCO Integer Mesh INCrement Origin in BLAS
MODKEY Integer Mesh othogonality and dimension key location
MOFSET Integer Mesh OFfSET location in BLAS
MSIZO In tgIr Mesh SIZe Origin in BLAS
MSPACE Integer Mesh SPACE reserved location in BLAS
MXPDIM Integer Max number of physical dimensions(=3)

Common Block /COMDDP/ S

NLOMT2 Logical array

Arguments of Called Routines

ICLASS Integer argument of EXPERT
ISUB Integer argument of EXPERT

Arguments on Exit

PV1 Real array output vecor set to PV2

37 0
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Outputs Through Common

Common Block /COMADP/

NONE

Common Block /COMDDP/

NONE
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[ A.1.9 Subroutine AVEVEC 0

External Routines

EXPERT

Intrinsic Functions

MAX
MOD

Arguments on Entry

KBLAS Integer array block addressing structure
PV1 Real array input vector I 0
PV2 Real array input vector 2

Inputs Through Common

Common Block /COMADP/

MINCO Integer Mesh INCrement Origin in BIAS
MODKEY Integer Mesh orthogonality and dimension key location
MOFSET Integer Mesh OFfSET location in BLAS 0
MSIZO Integer Mesh SIZe Origin in BLAS
MSPACE Integer Mesh SPACE reserved location in BLAS
MXPDIM Integer Max number of physical dimensions(=3)

Common Block /COMDDP/

NLOMT2 Logical array

Arguments of Called Routines S

ICLASS Integer argument of EXPERT
ISUB Integer argument of EXPERT

Arguments on Exit

PV1 Rial array output PV1 (PV1 + PV2)/2

39 0
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Outputs Through Common

Common Block /COMADP/

NONE

Common Block /COMDDP/

NONE

40,
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A.2 Electromagnetic boundary condition routines

A.2.1 Subroutine BCOPAT

External Routines

EXPERT
MESAGE

Intrinsic Functions

MAX
MOD

Arguments on Entry 0

D Real array displacement field
DDOT Real array displacement current
KBLAS Integer array block addressing structure
KO Integer array location of patch origin
KPBCAT Integer patch boundary condition attribute pointer
KTYPE Integer patch type
KX Intfier array location of patch eXtTeme
PATRIB Real array patch attribute table

Inputs Through Common

Common Block /COMADP/

MBAINC Integer bc attribute table step
MINCO Integer Mesh INCrement Origin in BLAS
MODKEY Integer Mesh orthogonality and dimension key location
MOFSET Integer Mesh OFfSET location in BLAS 0
MSIZO Integer Mesh SIZe Origin in BLAS
MSPACE Integer Mesh SPACE reserved location in BLAS
MXPDIM Integer Max number of physical dimensions(=3)

Common Block /COMDDP/ 0

NLOMT2 Logical array
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Arguments of Called Routines

ICLASS Integer argument of EXPERT
ISUB Integer argument of EXPERT

Arguments on Exit

D Real array D modified by boundary conditions
DDOT Real array DDOT modified by boundary conditions

Outputs Through Common

Common Block /COMADP/

NONE

Common Block /COMDDP/

NONE 0

0
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0
A.2.2 Subroutine BCONE

External Routines

EXPERT
MESAGE

Intrinsic Functions

MAX
MOD

Arguments on Entry

E Real array electric field
KBLAS Integer array block addressing structure
KO Integer array location of patch origin
KTYPE Integer patch type
KX lntrg~r array location of patch extreme

Inputs Through Common

Common Block /COMADP/ S

MINCO Integer Mesh IN(-rement Origin in BLAS
MODKEY Integer Mesh orthogonality and dimension key location
MOFSET Inthgcr Mesh OFfSET location in BLAS S
MSIZO lnteg(r Mesh SIZe Origin in BLAS
MSPACE Integer Mesh SPACE reserved location in BLAS
MXPDIM Integer Max number of physical dimensions(=3)

Common Block /COMDDP/ 0

NLOMT2 Logical array

Arguments of Called Routines

f ICLASS Integer argument of EXPERT
ISUB Integer argument of EXPERT

S~43 .
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Arguments on Exit

E Real array E modified by boundary conditions

Outputs Through Common 0

Common Block /COMADP/

NONE

Common Block /COMDDP/

NONE
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A.2.3 Subroutine GLUEIO 0

External Routines

EXPERT
MESAGE 0

Intrinsic Functions
0

ISIGN
MAX
MOD

0
Arguments on Entry

KBLAS Intcger array block addressing structure
KCASE Intcgur select copy/add to/from glhepatch *
KO Integer array location of patch origin
KTYPE Inti ger patch tyl)e
KX Integf r array location of patch extreme
PATCH Rfal array gluepatch buffer array
VEC Real array block vector field array"

Inputs Through Common

Common Block /COMADP/ 0

MINCO Integer Mesh INCrement Origin in BLAS
MODKEY Integer Mesh orthogonality and dimension key location
MOFSET Integer Mesh OFfSET location in BLAS
MSIZO Integer Mesh SIZe Origin in BLAS
MSPACE Integer Mesh SPACE reserved location in BLAS
MXPDIM Integer Max number of physical dimensions(=3)

Common Block /COMDDP/ 0

NLOMT2 Logical array
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Arguments of Called Routines 0

ICI Integer argument of MAX
ICLASS Integer argument of EXPERT
INGP Integer arratrgument of MAX
ISUB Integer argument of EXPERT 0

Arguments on Exit

KLEN Integtr
PATCH Real array
VEC Real array

Outputs Through Common 5

Common Block /COMADP/

NONE

Common Block /COMDDP/

NONE
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A.3 Particle routines 0

A.3.1 Subroutine SETCUR

External Routines

EXPERT
NILVEC set vector to zero

Intrinsic Functions

NONE

Arguments on Entry

KBLAS Intg~r array block addressing structure

Inputs Through Common

Common Block /COMADP/

NONE

Common Block /COMDDP/

NLOMT2 Logical array

Arguments of Called Routines

ICLASS Integer argument of EXPERT
ISUB Integer argument of EXPERT
KBLAS Integer argument of NILVEC
PCUR Real argument of NILVEC

Arguments on Exit

PCUR Real array initialised current array S

Outputs Through Common
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Common Block /COMADP/ 0

NONE

Common Block /COMDDP/

NONE
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A.3.2 Subroutine MOVCUR 0

External Routines

ASSCUR assign current to block element net
EXPERT 0
IVAR
MESAGE
PBLINK manage particle buffering between blocks

Intrinsic Functions 0

INT
MOD
SQRT 0

Arguments on Entry

KBLAS Integer array block addressing struct ure
KCASE Integer 0 for original move. > 0 for exchange buffer data 0
KCOVA Integer array block addressing for basis vectors
KPART Integer array particle addressing structure
PARTAT Real array particle attribute table
PBUFI Real array input particle buffer
PCOORD Real array particle coordinate array 0
PECOV Real array basis vector arra"

Inputs Through Common

0
Common Block /COMADP/

MINCO Integer Mesh INCrement Origin in BLAS
MNMOM Integer loc of No of particle MOMentum coords in LPARAS
MNPOS Integer Ioc of No of particle POSition coords in LPARAS 0
MOCPS Integer offset for Charge Per Superparticle value
MOFSET Integer Mesh OFfSET location in BLAS
MORGTI Integer Mesh ORIGin of I/T in Ecov addressing
MPAINC Integer particle attribute table step
MPNOO Integer Particle NO Origin in LPARAS 0
MPORO Integer Particle Origin table Origin in LPARAS
MSIZO Integer Mesh SIZe Origin in BLAS
MSPACE Integer Mesh SPACE reserved location in BLAS

49 "0

*



RFFX(93)56 MIMD PI( Final Report

MSPEC Integer location of no of SPECies in LPARAS 0
MXPDIM Integer Max number of physical dimensions(=3)
NOECA Integer no of ECOV' addressing entries per component

Common Block /COMBAS/ 0

NONE

Common Block /CHABAS/ 0

NONE

Common Block /COMDDP/

NLOMT2 Logical array 0

Arguments of Called Routines

ICLASS Integer argument of EXPERT 0
IFACEK Integer argument of PBLINK
INC Integer array argument of ASSCUR
INXBUF Integer argument of PBLINK
IOFSET Inthg r argument of ASSCUR
IOPARO Int(ger argument of IVAR 0
IPOMAX Integer argument of IVAR
ISPACE Integer argument of ASSCUR
ISUB Integer argument of EXPERT
JPARTO Integer argument of IVAR
JSPEC Integer argument of PBLINK
NSTEP Intfge r argument of IVAR
PCUR Rtal argument of ASSCUR
ZCMULT Real argument of ASSCUR
ZXN Real array argument of ASSCUR
ZXO Real array argument of ASSCUR 0

Arguments on Exit

KPART Integer array particle addressing structure
PBUFO Real array output particle buffer
PCOORD Real array coordinate array
PCUR Real array current array

50 .
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Outputs Through Common 0

Common Block /COMADP/

NONE

Common Block /COMBAS/

NONE

Common Block /CHABAS/

NONE

Common Block /COMDDP/

NONE

Common Block /XXX/

"NONE

0
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Subroutine ASSCUR

External Routines

JOIN GHOST routine (for testing)
LINCOL GHOST routine (for testing) trajectory element
MERGE merge ordered list of intersections
PICNOW GHOST routine (for testing)
POSITN GHOST routine (for testing)

Intrinsic Functions

INTS
MOD

0
Arguments on Entry

KINC Integer array block mesh increment
KOFSET Integer block mesh offset
KSPACE Integer block mesh space per component
PCMULT Real current/particle multiplier
PCUR Real array block current array
PXN Real array end position of virtual particle
PXO Real array start position of virtual particle

0
Inputs Through Common

Common Block /COMIBC/

NODIM Integer dimensionality
NOELl Integer array no of elements in block type/side
XLEN1 Real array length of side of block type

Common Block /COMGMA/ 0

XYZBLK Real array global reference coordinate of block

Common Block /COMADP/ •

MXPDIM Integer Max number of physical dimensions(=3)

52 .
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Common Block /XXX/

IBLOCK Integer current block number (for testing)

Arguments of Called Routines

ILEN Integer argument of MERGE
ILEN23 Integer argument of MERGE
INX Integer array argument of MERGE
IORi Integer argument of MERGE
IOR2 Integer argument of MERGE 0
IOR3 Integer argument of MERGE
IOR4 Integer argument of MERGE
ZALFA Rtal array argument of MERGE
ZXN Real argument of JOIN
ZXO Real argument of POSITN 0
ZYN Real argument of JOIN
ZYO Real argument of POSITN

Arguments on Exit

PCUR Rfal array nodal contravariant currents

Outputs Through Common 0

Common Block /COMIBC/

NONE
0

Common Block /COMGMA/

[ NONE

Common Block /COMADP/

NONE

Common Block /XXX/

NONE

530
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Subroutine MERGE

External Routines

NONE

Intrinsic Functions

NONE

Arguments on Entry

KA Integer length of list a
KB Integer length of list b
PA Real array list of increasing numbers a
PB Real array list. of increasing numbers b

Inputs Through Common

NONE

Arguments of Called Routines

NONE

Arguments on Exit

KC Integer length of merged list c
PC Real ordered merged lists a and b

Outputs Through Common

NONE S

,54 ,
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A.3.3 Subroutine ACCEL

External Routines

EXPERT

Intrinsic Functions

MOD
SQRT 0

Arguments on Entry

B Real array scaled contravariant magnetic field
E Real array covariant electric field
KBLAS Integer array block addressing structure
KCOVA Integer array block addressing for basis vectors
KPART Integer array particle addressing structure
PARTAT Real array particle attribute table S
PCOORD Real array particle coordinate array
PECOV Real array basis vector array

Inputs Through Common

Common Block /COMADP/

MINCO Integer Mesh INCrement Origin in BLAS
MNMOM Integer loc of No of particle MOMentum coords in LPARAS
MNPOS Integer loc of No of particle POSition coords in LPARAS
MOCPS Integer offset for Charge Per Superparticle value
MOFSET Integer Mesh OFfSET location in BLAS
MORGTI Integer Mesh ORIGin of 1/T in Ecov addressing
MORIGT Integer Mesh ORIGin of T in Ecov addressing 0
MPAINC Integer particle attribute table step
MPNOO Integer Particle NO Origin in LPARAS
MPORO Integer Particle Origin table Origin in LPARAS
MSIZO Integer Mesh SIZe Origin in BLAS
MSPACE Integer Mesh SPACE reserved location in BLAS
MSPEC Integer location of no of SPECies in LPARAS
MXPDIM Integer Max number of physical dimensions(=3)
NOECA Integer no of ECOV addressing entries iper component

55 ' 0
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NOECC Integer no of ECOV components per block 0

Common Block /COMBAS/

NONE 0

Common Block /CHABAS/

NONE

Common Block /COMDDP/

NLOMT2 Logical armay

Arguments of Called Routines

ICLASS Integer argument of EXPERT
ISUB Integer argument of EXPERT

Arguments on Exit

PCOORD Real array particle coordinate array

Outputs Through Common

Common Block /COMADP/

NONE

Common Block /COMBAS/

NONE

Common Block /CHABAS/

NONE

Common Block /COMDDP/ S

NONE

56 .
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[ A.4 Particle boundary condition routines

A.4.1 Subroutine EMITEL

[ External Routines

EXPERT
MESAGE

I
Intrinsic Functions 0

MAX
MIN
MOD

Arguments on Entry

D Ral array scaled contravariant displacement field 0
KBLAS Integer array block addressing structure
KO Integer array location of patch origin
KPART Integer array particle addressing structure
KX Integer array location of patch extreme
PCHG Real array charge density 0
PCPP Real charge per superparticle

Inputs Through Common

Common Block COMADP//

MINCO Integer Mesh INCrement Origin in BLAS
MNMOM Integer Ioc of No of particle MOMentum coords in LPARAS
MNPOS Integer loc of No of particle POSition coords in LPARAS
MODKEY Integer Mesh orthogonality and dimension key location
MOFSET Integer Mesh OFfSET location in BLAS
MSIZO Integer Mesh SIZe Origin in BLAS
MSPACE Integer Mesh SPACE reserved location in BLAS
MSPEC Integer location of no of SPECies in LPARAS
MXPDIM Integer Max number of physical dimensions(=3)

57.
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Common Block /COMBAS/ 0

NONE

Common Block /COMDDP/

NLOMT2 Logical array

Arguments of Called Routines

ICLASS Integer argument of EXPERT
ISUB Integer argument of EXPERT

Arguments on Exit 
•

KLENO Integer length of PBUFO
PBUFO Real array gluepatch buffer containing new particles
PCHG Real array modified PCHG at cathode surface •

Outputs Through Common

Common Block /COMADP/ 0

NONE

Common Block /COMBAS/

NONE

Common Block /COMDDP/

NONE

58 
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A.4.2 Subroutine QSHARE

External Routines

EXPERT

Intrinsic Functions

MOD

Arguments on Entry

KBLAS Integer array block addressing structure
KPART Integer array particle addressing structure
PARTAT Real array particle attribute table
PCHG Real array charge density
PCOORD Real array particle coordinate array

Inputs Through Common

Common Block /COMADP/

MINCO Integer Mesh INCrement Origin in BLAS •
MNMOM Integer loc of No of particle MOMentum coords in LPARAS
MNPOS Integer loc of No of particle POSition coords in LPARAS
MOCPS Integer offset for Charge Per Superparticle value
MOFSET Integer Mesh OFfSET location in BLAS
MPAINC Integer particle attribute table step
MPNOO Integer Particle NO Origin in LPARAS
MPORO Integer Particle Origin table Origin in LPARAS
MSIZO Integer Mesh SIZe Origin in BLAS
MSPACE Integer Mesh SPACE reserved location in BLAS
MSPEC Integer location of no of SPECies in LPARAS
MXPDIM Integer Max number of physical dimensions(=3)

Common Block /COMBAS/ S

NONE

.59
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Common Block /CHABAS/

NONE

Common Block /COMDDP/

NLOMT2 Logical array

Arguments of Called Routines

ICLASS Integer argument of EXPERT
ISUB Integer argument of EXPERT

Arguments on Exit

PCHG Real array charge density

Outputs Through Common S

Common Block /COMADP/

NONE

Common Block /COMBAS/

NONE
0

Common Block /CHABAS/

NONE
0

Common Block /COMDDP/

NONE
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ABSTRACT *

A new relativistic electromagnetic PIC algorithm for general two and three di-
mensional geometries is described. Correct choice of co- and contravariant field
components and of weighting yields simple coordinate invariant numerical pre-
scriptions. The combination of isoparametric hezahedral elements, generated
by transfinite interpolation, and multiblock decomposition leads to algorithms
ideally suited to MIMD computers.
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Chapter 1

Introduction

1.1 Contents

Virtual Particle (VP) particle-mesh algorithms are now established as an ef-
fective approach to obtaining numerical schemes for solving the relativistic
Maxwell-Vlasov equations [6, 7, 8, 2, 1, 9]. Unlike conventional Particle-in-
Cell (PIC) schemes, they are derived using finite elements in both space and
time. Current is assigned from 'virtual particles' placed at points specially
interpolated between positions at successive time levels, a procedure which * 4
automatically leads to charge conservation. Existing VP implementations use
rectangular finite elements in two dimensional cartesian and polar geometries.
Only a restricted class of device is well modelled in such circumstances, lead-
ing to the need to implement VP in more complex geometries. This report
shows how the VP algorithms extend to general three dimensional body-fitted
elements [1]. The resulting multiblock decomposition of both field and particle
data allow efficient usage of Distributed Memory MIMD architecture comput-
ers.

The report has been broken down into a number of largely self contained
chapters, the contents of which are as follows:

Chapter 2 contains definitions and identities in general curvilinear coor-
dinates used in the derivation of the equations for the isoparametric finite
element particle-mesh schemes.

Chapter 3 describes the method of dividing complex objects into a set of
curvilinear hexahedral blocks, and of subdividing those blocks into hexahedral
finite elements using transfinite interpolation. Metric tensors and basis vec-
tors are defined by using coordinate transformations isometric to the electric
potential representation.

Chapter 4 outlines a number of alternative Virtual Particle schemes for the
solution of the electromagnetic field equations and summarises the time step

.0

5 ,
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loop for the chosen variant. 0

Chapter 5 presents the Virtual Particle charge and current assignment
schemes in general curvilinear coordinates for the linear basis function finite
elements discussed in Chapter 4 for Maxwell's equations.

Chapter 6 describes the treatment of boundary conditions.

Chapter 7 outlines the planned data organisation in the MIMD implemen-
tation of the algorithm.

1.2 Acknowledgements

This report was prepared as part of a research project sponsored by the Air
Force Office of Scientific Research (AFSC) under Contract F49620-92-C-0035,
"General Geometry PIC Algorithms and Software for Distributed Memory •
MIMD Computers". A substantial part of the material contained in this re-
port was developed from research undertaken during earlier research projects
ABR 40 451 "Electromagnetic Modelling" sponsored by AEA Corporate Re-
search and RAE 1B/7 "3-D Modelling of HPM Sources" sponsored by RAE
Farnborough. 0



Chapter 2 °

Tensor Definitions
O

This Chapter contains definitions and identities in general curvi-
linear coordinates used in the derivation of the equations for the
isoparametric finite element particle-mesh schemes.

2.1 Basis Vectors and Components

Let the reference cartesian coordinates have components (xz, z2, x') and unit
vectors (*x, *2, * 3 ), so that a vector, x, may be written 0 4

x=x'x, (2.1.1)

where summation over the repeated index i (= 1, 2, 3) is implied. Now suppose
that (x', X2, X3) are expressed as functions of the curvilinear coordinate
components (i1, i2, t3), i.e.

X I = X I (•',l j2, _3) , etc, (2.1.2)

or more concisely (
x = x(x) (2.1.3)

We define the basis vectors

e= (2.1.4)

and the reciprocal basis vectors

ei =Vt' (2.1.5)

A vector A may be expressed in terms of its contravariant component A' or
covariant components Aj:- S

A = Aei : contravariant (2.1.6)

= Aei: covariant (2.1.7)
0

"* .4(
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Note that in general ei and ei are not unit vectors. If we introduce the unit
vectors. ei

e, = F (2.1.8)

then (2.1.6) may be written

A = (A'iei)&, = A(i)&i (2.1.9)

where A(i) are the physical components.
The basis vectors and reciprocal basis vectors are orthogonal

e, - = bi (2.1.10) 0

where 6b is the Kronecker delta (= 1 if i = j, 0 otherwise).

The reciprocal basis vectors can be written in terms of the basis vectors

i ej x ek e(2.1.11)
ei e x ektl J

and vice-versa
ei = (ej x ek)J (2.1.12)

where the Jacobian
J =Vg= le.ej x ekl (2.1.13)

can be written in terms of the square root of the determinant, g, of the metric
tensor.

The (covariant) metric tensor is defined as 0

gi = e,. e, (2.1.14)

and its reciprocal tensor, the contravariant metric tensor is

j = e e-(2.1.15)

It follows that
ggk9 =i 6(2.1.16)

g = Ilgi= j.2 (2.1.17)

A' = 9'jAj (2.1.18)

Ai = giiAk (2.1.19)

In cartesian coordinates, the covariant, contravariant and physical components
are identical and the metric tensor reduces to the g1j = 6,j. For orthogonal
systems, gij = 0 for i 0 j. In general gij is symmetric with six distinct
elements, g1j = gj,.

... .. .. ..

0• .



5 J W Eastwood, R W Hockney and W Arter RFFX(92)52 9

2.2 Coordinate Transformation

A vector A is independent of the coordinate system it is represented in. Thus
if A has contravariant components A', coordinates z', and bases ej in one
system, and A', 2', 6i in another, then

A = A'e, = A'i, (2.2.1) 0

Dotting with e' gives
Aj = Ai,• ej (2.2.2)

i.e. 0.

Aj = A'-•X, (2.2.3)

Similarly

A, = A,-xj (2.2.4)

Tensors transform similarly. So for example

O~k O2' -

Bi = -- ---t-Bkl (2.2.5)

where B,, and Bkl are rank 2 tensors in the unbarred and barred coordinate 4
systems, respectively.

From Eq.(2.2.5), it follows that if we have x = x(x), where x are cartesian,
and given that in cartesians, gjj = 6,j, then in the barred coordinates the
metric tensor is Ox' Ox' Ox' Ox'

which is the same as given by Eq.(2.1.14).
Volume elements transform in the usual fashion:

dr = dxl dx2 dX3 = Jdt' dd 2 dt 3  (2.2.7) 0

where

100

2.3 Vector Identities

a', e, : contravariant components and bases

a,, ei : covariant components and bases

gij : metric tensor, g = I giII
p : scalar

* '4
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eiti permutation symbols: = 1 for cyclic indices, -1 for (2.3.1)

eCjk anticyclic and 0 for repeated indices

f : permutation tensor = e ik/ V9_ (2.3.2)

tik : permutation tensor = geit (2.3.3)

a b = a'b, = aib' (2.3.4)

(a x b)' = c'`:ajb (2.3.5)

(a x b), = fi,&ajbk (2.3.6)
_ p(Vp), = (2.3.7)

V.a= / aVga' (2.3.8)

V -0(2.3.9)

(V x a)' = #kOak (2.3.10)

a -Vp = a -p (2.3.11)

V =/ I ay ig- a± '(2.3.12)
-~g at ,,,9 a

f ijk fa', = - 6'6- bbi" (2.3.13)

2.4 Derivatives of Vectors •

Given some vector A, then its derivative with respect to some cartesian com-
ponent x' is

*, 0 OA'
a- - = (2.4.1) 0

In general (barred) coordinates, the covariant derivative is likewise defined,

a = e'. -A = e . _ekAk (2.4.2)A'±= ' - 8±, =e .

but now the basis vectors are no longer independent of the coordinates. From
(2.4.2)

A A' Ak f e" (2.4.3)

The term is the curly brackets in Eq.(2.4.3) is the Christoffel symbol of the S
first kind. From Eqs.(2.1.4) and (2.1.5) we have

"O ek &i 0(2x.
e ____ (2.4.4)
0±~ -I' aw0± rk
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The Christoffel symbols are not tensors, and they transform between two gen-
eral coordinate systems according to

82i a P Ox"aX ai a2xI171,-:"_ rý ýX_-.ýTj •X + aXtjaia (2.4.5)

Repeating the above argument for covariant vector components we have 0

aAj ae k
A = ' + Akei - O- (2.4.6)

aA _ aeA (2.4.7) 0

_ BA,- r.Ak (2.4.8)

To obtain (2.4.7), we used e'. ei =6 and differentiated term by term.
The Christoffel symbols arise when we wish to write terms such as a. Vb 0

in tensor form, or in the absolute (or intrinsic) time derivative of a vector.
The covariant components of the absolute time derivative of vector A are

defined as
6AP dA d, =ep . -, ep * Te A,.
T = d-- T ,= t•.

_ dAt , d
dt•- - FrA,--- (2.4.9)

The contravariant components are likewise defined

6A P." dA d
"" d = d- -= e,A

dA' A'( de,\
dA= - + A e. -/

-AP A e e, d'-

dA' ~= P + rI, A' -di (2.4.10)

2.5 Maxwell's Equations

Using the formulae of Section 2.3 we can write Maxwell's equations in tensor
form:-

-B- _,,kEk (2.5.1)

* ,4
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1 8

v 2 •'= 0 (2.5.2) • .

OD' gijk !H±._ j' (2.5.3)Vf-=

1 8
v rgDi = p (2.5.4) 0

where B' and Ek are magnetic and electric field components, D' are electric
displacement components and H, are magnetic intensity components. Quan-
tities j' and p are respectively current density and charge density.

It is convenient to introduce extensive current and charge variables

A= w (2.5.5)

Q = VgP (2.5.6)

and volume scaled flux quantities b' and di for magnetic and displacement
fields

bs= ý,FgB' (2.5.7)

d = vFVD (2.5.8)

If in addition we write the permutation tensor in terms of the permutation
symbol, we can write Maxwell's equations as

b.... = _ijkaEk (2.5.9)S T8±'

Ob•
= 0 (2.5.10)

8_•'=ek jH...A _ (2.5.11)

Od' - O,

ýF = Q (2.5.12)

Equations (2.5.9) - (2.5.12) have the particularly attractive feature that they
have the same form irrespective of coordinate system, and contain no explicit
reference to the metrics. This is also true of the relationships between the
electromagnetic fields and potentials:-

E= A,, (2.5.13)

b = _ekOA_. (2.5.14)8±'

The only explicit reference to the metrics appears in the constitutive relation-
ships between fields, which in vacuo are

gsoHk = -be (2.5.15)
V/. .0
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coEk = !-.d' (2.5.16) 0

More generally, po and eo can be replaced by tensor permeabilities and per-
mrittivities.

A similar attractive simplicity appears in the Action Integral for the elec-
tromagnetic field equations:-

I = Jdt d2± dt2 dt 3 {l(Eid - H,b') + P'A, - QO} (2.5.17)

The metric free forms simplifies the problem of writing a program module for
solving Maxwell's equations in arbitrary non-orthogonal coordinate systems. 0

2.6 Equations of Motion

The relativistic equations of motion of a charged particle are

dxd-" 
(2.6.1)

dp
t- = q(E + v x B) (2.6.2)

where
p = -fmov (2.6.3)

2y' 1 + ("_ = I/ I - (2.6 .4 )

Introducing general coordinates, (21, i2, 23), i.e.

x = x(±', t2, t3) (2.6.5)

gives

dx ox dtk
dt 02zk dt

d~k
= e-'7T = ek (2.6.6)

Thus, Eq.(2.6.1) transforms to

dt =(2.6.7)

Applying the results of Eqs.(2.3.3), (2.3.6), (2.4.9) and (2.5.7) to Eq.(2.6.2) S
gives the covariant momentum equation

dp. 268
- rrpri = q [E. + eqvfb3r (2.6.8)dt

° 4
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The particle dynamics can be included in the action integral, Eq.(2.5.17), by
adding the extra particle lagrangian term,

"- J -dt (2.6.9)

and explicitly expressing the charges and currents in Eq.(2.5.17) as sums over S
particles, i, with charges q,

Q = •q,6(± - _- t2)b(t3 _ j3) (2.6.10)

The equation of motion, Eq.(2.6.8) arises from the Euler-Lagrange equation

O.aL d 0L
a• L - z d ft (2.6.12)

where L is the total Lagrangian density.

* 4
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Chapter 3

Finite Element Generation

This Chapter describes the method of dividing complex objects
into a set of curvilinear hexahedral blocks, and of subdividing
those blocks into hexahedral finite elements using transfinite in-
terpolation. Metric tensors and basis vectors are defined by using •

coordinate transformations isoih.etric to the electric potential rep-
resentation.

3.1 Introduction *

A two level decomposition of a complex object into a set of finite elements
is proposed. First, the object is divided into a set of curvilinear hexahdral
blocks. In selecting this multibloek division, it is important to choose tfhe divi-
sion of complex objects into sufficiently convex volumes to avoid the creation
of very small, or even negative, volume elements in the blending process; this
could cause the numerical simulations to fail. However in the applications
envisaged it is unlikely that singular elements will present serious difficulties.
Computational efficiency dictates that wherever possible, orthogonal blocks
be used (such as rectangular bricks and cylinder sections) as this greatly re-
duces computational costs and storage. For the purposes of facilitating load
balancing on MIMD computers, it may be advantageous to subdivide blocks
beyond the level dictated by the object's geometry.

Each block of the multiblock decomposition is described by its bounding 0
curves; four intersecting curves in two dimensions and twelve curves in three
dimensions. Alternatively, the three dimensional block may be described by
bounding surfaces. The relationship of the block coordinates to the global
coordinates of the object is described in Section 3.5. The locations of element
nodes within a block are generated by blending the interpolants from the 0
bounding curves or surfaces, as described in Sections 3.3 and 3.4.

In order to transform between curved space (barred) and physical coordi-
nates, and to integrate the equations of motion, values of the contravariant
basis vectors (Eq.(2.1.4)) are required. The integration of the field equations

15
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requires metric tensor values (Eq.(2.1.4)). These may be evaluated from the
finite element approximations to the coordinate transformations, as outlined 0
in the following section.

3.2 Isoparametric Elements

3.2.1 2-D: Linear Quadrilaterals

itss

Z'E7

Figure 3.1: The isoparametric linear quadrilateral element with corner nodes
x, ... x4 maps to the unit square in the barred coordinate space.

The two dimensional linear isoparametric element uses the same linear support
function for the coordinate mapping as for the finite element scalar potential.
Figure 3.1 shows a quadrilateral element in physical and barred coordinate
space. A point x is related to the barred coordinates i = (1,± ) by

x = x1 (I -2')(1 -2)

+ x 2 '(1 _± 2 )
+ x3 . 1±2

"+ x4(1 - il).t2 (3.2.1)

Contravariant bases

Ox
el - (x 2 - xI)(1 - 2 )+(x 3 -x 4)

2

= rs(i - t2) + rNt 2  (3.2.2) 0

Ox
e= 2 = rw(l -2 ') + rEiX (3.2.3)

e3 = z (3.2.4)

Covariant bases

e (e 2 ; X) [( )rw x ~+ rE X i (3.2.5)

"* .4
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2 x ) (1 t2)i x "s +' 2 i x rNj]/J (3.2.6) 0

e3 = (3.2.7)

Metric tensor

g *l el = (1 - t
2)2r )2r2 + 2i(1 -_2)rs• rN (3.2.8)

922= e 2 e 2 = (1 -(2') 2r' +(±1) 2+1(l - ±')rE• rw (3.2.9)

= 1 (3.2.10)

912 = 92, =e2el

=(1- 1 )(1- 2 )rs rw +i(1 - ± 2)rs • rE + 2122rN• rE + (1- 1)j2 rN -rw
(3.2.11)

g23 = 932 = 913 = 931 = 0 (3.2.12)

J = v•= e xe 2 .e 3

= (I _- )(- 2)(rs x rw).

+ f 1 (1-- _ 2)(rS x rE).-

+ 2 122(rN x rE) • i

+ (1 -_ '
1 ); 2 (rN x rw). z (3.2.13)

The formulae (3.2.2) - (3.2.13) give a geometrical interpretation of the ba-
sis vectors and metric elements in terms of interpolation in the element side
vectors rw, rs, rE and rw. 0

A visualisation of the reciprocal vector sets is provided by Figure 3.2.
There, both the contravariant and covariant basis vectors are sketched for
node I of the element. At node 1, the Jacobian takes a value equal to the area
of the parallelogram formed by rw and rs,

J = Joo = rs rw. (3.2.14)

and the vectors are
e = rw x i/J 00, el = rs (3.2.15)

•2 = i x rs/Joo, e2 = rw (3.2.16)

3.2.2 3-D: Linear Hexahedra

If we label the nodes of the 3-D element by index triplet (i,j, k), 1,j, k = 0 or 0
1, and let

WO(z) = (I - z) (3.2.17)

Wn(z) = z (3.2.18)

0

| _' I I I I , ,
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2 E

x2k e,

e

xl

X0

Figure 3.2: A sketch of the basis vectors at node I of the quadrilateral element

then the 3-D analogue of Eq.(3.2.1) becomes

x = xijkWi(i± )W,(± 2 )Wk(± 3 ) (3.2.19)

The contravariant basis vectors become
8x
0I=~j (Xi,& _ Xojk)W,()kX

rjk r W( t2)Wk( f) (3.2.20)

Similarly
e 2 = r,½kWi(x' )Wk (3) (3.2.21)

e3 = rjWj Wj( t2) (3.2.22)

The covariant basis functions, metric tensor elements, etc follow by substitut-
ing Eq.(3.2.19) into the appropriate formula as shown in Section 4.1.

3.3 Two Dimensional Interpolation

Mesh generation for finite volume and finite element schemes, by blending the
interpolants from intersecting pairs of curves such that the mesh exactly fits
the bound.ary curves, was introduced by Gordon & Hall (1] and is now widely •
used in body fitting fluid flow codes, such as Harwell- FLOW3D [2,3]. We
summarise here the transfinite interpolation formulae that we plan to use in
the body fitting electromagnetic particle-mesh software.
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II

0

Yo(S YJ (S)

0

Figure 3.3: The four-sided domain is bounded by two pairs, (Xo, X1 ) and
(Yo,Y 1 ), of curves with intersections at the four points xij, ij = 0 or 1.

Figure 3.3 shows a four sided domain. Each of the boundary curve pairs •
is a function of a single variable, denoted r or s. It is assumed, without loss
of generality, that 0 < r < 1, 0 < s < 1. The problem is to define a function
x(r, s) such that

x(r, 0) = Xo(r) (3.3.1)

x(O, s) = Yo(s) (3.3.2) 0

x(r, 1) = XI(r) (3.3.3)

x(l, s) = Yi(J) (3.3.4)

and
x(i,j) = Xj(i) = Y,(j) = xi (3.3.5) 0

where ij = 0 or 1.
If we introduce interpolating functions Oo(s) and 01(s), where 00o(0) =

1, V0(1) = 0, 01(0) = 0, 01i(1) = 1, then we can write the 'horizontal' curveinterpolation
xA(r, s) = Xo(r)t0(s) + X,(r)OI (s) (3.3.6)

(Typically, one would take b piecewise linear, i.e. l00 = 1 - s, 01i = s).
Similarly, we can define the 'vertical' curve interpolation using interpolation
functions •0(r) and 01i(r):-

0
x,,(r, s) = 4Oo(r)Yo(s) + 0b1(r)Y1(s) (3.3.7)

The interpolation given by (3.3.6) satisfies (3.3.1) and (3.3.3), but not in gen-
eral (3.3.2) and (3.3.4). Similarly, Eq.(3.3.7) satisfies (3.3.2) and (3.3.4), but

0

0
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not generally (3.3.1) and (3.3.3). Both interpolants (Eqs.(3.3.6) and (3.3.7))
satisfy the corner constraints, Eq.(3.3.5), as does the corner interpolant

x,(r, s) = xoo~o(r)Oo(s) + xo1 o(r)0j(s) + xio€i(r)Oo(a) + xi0i(r•)OI(s)
(3.3.8)

Taking a linear combination of Eqs.(3.3.6)-(3.3.8) gives

X = axh + 9xV + 7xc (3.3.9)

Evaluating Eq.(3.3.9) at the sides r = 0, 1, and s = 0, 1, and equating the re-
sults to Eqs.(3.3.1)-(3.3.5) yields the desired transfinite interpolation function
if o =,8 = -y = 1. Thus we may write our transfinite interpolation function

x(r, s) = Xj(r)tOj(s) + Yi(s)O,(r) - xj1 4.(r)Vj(9) (3.3.10)

where the sums over 9,j = 0 or 1 are implied.

3.3.1 A Tabular Curve Example

Given the 'horizontal' tabular curves

Xo(I),x,(J), 1 =O,NX (3.3.11)

and 'vertical' tabular curves

YO(J), Y 1 (J), J = 0, NY (3.3.12)

where

Xo(0) = Yo(0), X1 (0) = Yo(NY)
Xo(NX) = Y1 (0), X 1(NX) = YI(NY) (3.3.13)

and assuming linear interpolation, we shall obtain the expression for the coor-
dinates of node (I,J).

From the definitions of r, s, I, J, we have

r = IINX, a = J/NY (3.3.14)

For linear interpolation 0

•O(z) = boO(z) = I - Z; 0: <z < 1 (3.3.15)

• 1(z) = 01'(z) = z; 0 < z < 1 (3.3.16)

x(J,J) = Xo(I)(l -s)+Xj(1)s

+ Yo(J)(1 - r) + Y 1 (J)r

- xoo(l - r)(l - .) - xot(1 - r)s - x1or(1 - s) - XIM(.3.17)

* 4
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3.3.2 Coordinate Transformation

The transfinite interpolation example given above can be readily extended to
provide global definitions of basis vectors and metric tensor elements in terms
of the boundary data values. If we assume that the domain enclosed by the
'horizontal' and 'vertical' curve pairs maps to the rectangle 0 < t' < NX,
0 < t2 < NY in curved space (so the curved space grid would have unit
square elements), and that points on the boundary curves are joined by straight
segments, then

Xo(P) = Xo(1) + (Xo(J + 1) - Xo(J))(•' - I) (3.3.18)

for I < il < 1+ 1, etc, and (17) may be extended to general position (•I,±2):_

x(l,2) -= Xo(2 1 ) + (X 1 (. 1) - XO(. 1 ) - xox). 2 /NY

+ Yo(.t 2 ) + (Y 1(±2) - yo(_ 2 ) - x1o).t 1 NX

- x0o + (xo1 + xl0 - xoo - xii)Yrz 2/NX NY (3.3.19)

from which values of contravariant basis vectors

ei = ft (3.3.20)

and metric tensor elements
gj = ei. ei (3.3.21)

may be computed.

3.4 Three Dimensional Interpolation

3.4.1 Interpolation between Specified Curves

The two dimensionaJ t.•t•.polation scheme of the previous section generalises 0
straightforwardly to tarwe dimensious. The aim is to divide the general curvi-
linear L'xahedra as illus ratei in Figure 3.4 into a set of hexahedral elements
which map to unit cubes in curved space.

The bounding curve Xi,(r), r4[0, li joins the corner node xoj, at r = 0
to node x1i, -t t = 1. Similar'., Y,j(s) Joins XiO, to xi1 and Z,•(t) joins X,7 o •
to xij. where i,j = 0 or 1. The int rl,•1lation functions for the r,s, and t
coo:d-nates are :espcctively 0, ip and ;i.

Bien.;ing interpolants between tLi boun-aig curves to obtain exact fits at
a eight edges gives the formula

.Xk(J ):, Yi(s)(r)1(f)

+ Z,,(t O,(r).O (s)i7)(t) (3.4.1)

where s, .7wver 2,j,/, = 0 n..d 1 are impi ,-d

.n
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110

yit

roi
I"

Figure 3.4: The six aided volume is defined by the twelve bounding curves
joining the corner nodes at positions xiik, i, j, k = 0 or 1

3.4.2 Interpolation between Specified Surfaces

In some circumstances, one or more of the surfaces may be specified, e.g.
by some analytic formula. Let us suppose that X,(s, t), s, tc[0, 1] represent
opposite surfaces passing through the four points xOjk for i = 0 and xljk for

i = 1. Similarly Yj(r,t) are surfaces passing through the sets of points xiOJ
and Xilk, and Zk(r,a) are surfaces through xijo and xij1 , respectively.

In the case where all eight surfaces are specified, the relevant interpolant
is [4]:

x(r,s,t) = X,(s,t)O,(r) + Y,(r,t)'•C(s) + Zk(r,s)?Ck(t)

- Xjk(r)Oj(s)qk(t) - Yk(s)Oi(r)llk(t) - Zij(t)Oi(r)O(s)

"+ Xijk4i(r)Oi(s)rqk(t) (3.4.2)

If one or more of the surfaces is not given in this form, but only in terms of
its bounding curves, then we use the two-dimensional blending interpolant to
give an expression that may be substituted in Eq.(3.4.2). For example, we
may set (for k = 0 and for k = 1),

Zk(r, s) = Xjk(r)Oj(s) + Yik(s)0i(r) - Xijk0i(r)Oi(s) (3.4.3)

Re-expressing all of X-, Yj and Zk in this way gives us back Eq.(3.4.1).

3.5 Multiblock Decomposition

The multiblock decomposition divides the object into blocks, and these blocks
map naturally onto processes on a MIMD computer architecture. Within each
block, finite element contributions are assembled on the uniform lattice in
curved coordinate space, and particle positions are stored in curved space.

0 .*. .
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This, as will be shown in later chapters, leads to field equations, charge as-
signment and current assignment which are the same in all coordinate systems, 0
and require no more computational work than for the uniform cartesian mesh
case. Geometrical complications are swept into the constitutive relationships
and the particle accelerations.

Efficient MIMD software balances work across processors whilst minimising
the amount of global data and interprocessor message passing. The physics
of Maxwell's equations provide a natural ordering nf the data to achieve this,
in that interactions at a point in space only involve information from its light
cone in space-time; the computational domain is subdivided into blocks. The
blocking is chosen to simplify implementation of boundary condition and of
data visualisation, and to optimise the utilisation of computer resources. Spa- 0
tially blocked field data only requires data from neighbouring blocks in the
distributed memory MIMD implementation.The master control program only
requires information about the block surfaces ("glue patches") which stick to-
gether the volume filling meshes in each of the slave block processors. This
arrangement offers the prospects of a larger computational intensity and weak 0
Amdahl limit on parallel processor speedup. Moreover, the simple logical
square (cube in 3-D) addressing within each block leads to fast serial process-
ing within each slave process.

Without compromising the subdivision of the spatial mesh into blocks to
get efficient MIMD processing, one can further demand that boundary con-
ditions only apply at the surfaces of block. This completely eliminates the
addressing problems in embedding surfaces within blocks, and allows surface
data to be passed to the control program through the "glue patch" tables.
Further saving of computer storage and time arise from only keeping metric
information and material property data in those blocks where they are needed. 0
When a large number of small blocks are needed to describe a complex object,
load balancing is achieved by assigning several blocks to one processor.

In summary the mesh (or more correctly, the finite element net) will use:

"* A multiblock spatial decomposition where segments of target surfaces 0
and other boundaries are coincident with block surfaces.

"* Indirect ("glue patch") addressing between blocks, and logical space (ij)
(or cube (ij,k) in 3-D) element nets within blocks.

"* Transfinite interpolation subdivision of the curvilinear quadrilateral (hex-
ahedral in 3-D) multiblocks into finite elements.

Figure 3.5 illustrates the multiblock decomposition of a complex object
into a set of curvilinear sub-block connected by glue patches. The cylinder (a)
is divided into five block (b). These blocks are treated as separate objects with S
their own coordinate systems, and communicate by passing field and particle
data via the glue patches (denoted by dashed lines in (c)). (d) the curvilinear
quadrilateral (hexahedral in 3-D) blocks are meshed by transforming them to

0
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W (d)

, X•

Figure 3.5: An illustration of the multiblock decomposition and meshing of a
complez object.

rectangles (bricks in 3-D) in curved space and dividing the rectangles (bricks)
into unit side square (cube) elements. Uniblock particle and field primitives
will be defined for the sub-blocks.

Metric and basis vectors are defined by the transformation between the
physical and curved space meshes. The simplicity of the computation of metric
elements from boundary data in transfinite interpolation offers the option of
recomputing values of elements as required from the boundary curve set:- for
an N x N x N mesh, it reduces necessary storage to the 12N boundary vectors!
Another alternative, and one we propose adopting, is to store global reference
points for each uniblock, plus the covariant basis vectors and metric tensor
elements for each block type. In most cases, symmetries and congruences
greatly reduce the amount of geometric data to be stored. For instance, the
example shown in Figure 3.5 extended to 3-D perpendicular to the plane shown
has two block types only; the central rectangular brick block type, which
requires only six numbers to completely specify its basis vectors and metric
tensor elements, and the surrounding wedge shaped block type, which requires
a single plane of values each for the basis vector and metrics. Specifying the
four reference points (0,0,0), (1,0,0), (0,1,0) and (0,0, 1) as shown in Figure
3.4 allows similar blocks to be fitted to block types by translation, rotation,
reflection and linear scaling.

"0



Chapter 4

Field Equations

In this Chapter, a number of alternative Virtual Particle schemes
are derived for the solution of the electromagnetic field equations.
Their relative merits are discussed and the particular variant which
will form the basis of the MIMD software is specified. 0

4.1 Introduction

When a virtual particle electromagnetic particle-mesh scheme is derived, it 0

implies a specific method for solving Maxwell's Equations. Such a method
is optimal in the sense that it minimises the approximated action, and will
inherit the many desirable properties of virtual particle particle-mesh schemes
where applicable, e.g. being well suited to parallel computer implementation.

In this chapter, following references [6, 9], virtual particle electromagnetic 0
particle-mesh schemes for general three-dimensional co-ordinate systems are
outlined. Effectively the schemes differ only in the forms taken by the consti-
tutive relations. Nevertheless, a meaningful comparison of their relative merits
is possible and is set out. The chosen algorithm is summarised at the end of
the chapter; We propose that the simplest lumped scheme form the basis of
the software in the first instance.

4.2 The Variational Formulation
0

The electromagnetic field action integral may be written in general curvilinear
coordinates (V, t2, _3) as

I = I/di d±1 dt2 dt3v1g{I (E, D' - H, B') + j' A, - p~ 1, (..1~ (4.2.1)

where electric field

, Aý, (4.2.2)

0
25
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magnetic field
e'i 1' vAkB'= t ;ji•A (4.2.3)

electric displacement
D=- •~ = eogiJEj, (4.2.4)

magnetic intensity

H. = -1-gB, (4.2.5)
P~o Mo

current density

= b - -1)6(i - )6(i, - " (4.2.6)
p V•r-

and charge density

p E qP (_+l - ±I)6(t2 - )j(•3 - t3). (4.2.7) 0
P ,V/9 PP 427

The sum over p is over particles, each with charge qp. The metric tensor
elements gi, can be computed from the relationship between the reference
cartesian coordinates xi and the general curvilinear coordinates i', and then
g =11 gij II

Discrete equations are derived by introducing finite element approxima-
tions to the potentials

S= 4U (4.2.8)

A, = A(i)W(,) (4.2.9)

where 0 and A(,) are nodal amplitudes. Equation (4.2.8) is shorthand for

( t2, P, t)= O9(k, n)U(k, n; ' 1, • , •, t) (4.2.10)

where the sum is over spatial (k) and temporal (n) node indices. Eq.( 4.2.1) is 0
then varied with respect to the nodal amplitudes yielding discrete approxima-
tions to the inhomogeneous Maxwell's equations. (The homogeneous Maxwell
equations follow by virtue of Eqs.(4.2.2) and (4.2.3), if U and Wi are appro-
priately chosen). 0

4.2.1 The Pointwise Scheme

The simplest general geometry extension of the derivation given in reference
[6] is given by supposing that the relations

= co- •vgEj, (4.2.11)

Hi = 1 i, (4.2.12)

PI

S
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hold in a pointwise sense. Introducing the basis functions Vk for Ek and X, 0
for bP = Vg/B' implied by substituting Eqs.(4.2.8), (4.2.9) in Eqs.(4.2.2) and
(4.2.3) gives nodal equations

O~di- p = 0, (4.2.13)

d - e,•kjHk + I• = 0. (4.2.14)
where 0, is the centred finite difference operator in the ij coordinate di'rection,
and Ot is the centered time difference i.e. if the nodal interval is unity, then

Otf(t) = f(t + 1/2) - f(t - 1/2), etc.

The homogeneous Maxwell's equations become

O,b' = 0, (4.2.15)

Orb' + eskOJEk = 0, (4.2.16)

resulting in a need to satisfy constitutive relations 0

d'= co{dtvr/d2' dj 2 dj 3 g(i)jVYi)Vj} E, (4.2.17)

H= 1{dtdi dd2 d_+3 1X(k) X1b, . (4.2.18)

A disadvantage of this approach is that in view of Eqs.(4.2.14) and (4.2.16),
b' and d' are natural variables to update, but Eq.(4.2.17) is not explicit for E,
in terms of d'. To understand the seriousness of the problem, it is sufficient
to consider the two-dimensional case, with g'" constant. The lowest order
conforming basis functions compatible with charge conservation yield from
Eq.(4.2.17), assuming unit mesh-spacing, that

dr= to zr [&(j+r +aI)J~~24(~ [Y)E 1 } (4.2.19)

and similarly for the y and z components. &* denotes a shift of plus or minus
half a mesh-spacing in the at" co-ordinate. The g' term is not susceptible to
any but the grossest approximation. Taking Eq.(4.2.19) as it stands leads a
coupled system of equations involving all nodal values of E. and E,. Hence
other approaches are investigated in the following sections.

4.2.2 Optimal Schemes

These schemes are derived by replacing the pointwise relations Eqs.(4.2.11)
and (4.2.12) with weak approximations that are optimal in a least squares'
sense. The replacements do not change the current and charge density terms,
hence attention focuses on

I,= dt dil dj2 d_3 (gi dd o - /i (4.2.20)
• P0
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or 0

J2  Jdt dildadaXlVg9s, D--- B I. (4.2.21)

It is convenient to introduce here the inner product notation

(a, b) = Jdt d-' d22 dtSa(ti, t)b(±', t), (4.2.22) 0

where D is the domain of interest.
To treat 611, Eqs.(4.2.11) and (4.2.12) are rearranged in the forms

Ej = --2 gid', (4.2.23)

Hi = I--gj b. (4.2.24)

Introduce the representation d' = P)V(j, then the optimal approximation to
Eq.(4.2.23) yields E' = !V)(V(j) where

, = (--•-91 iV, V6)). (4.2.25)

Similarly Eq.(4.2.24) gives

(H-iX(o, X(,)) = (;7g gbo -(g), X11). (4.2.26)

Varying (4.2.20) yields 0

b11 = Jdt &l' d±2 d ±3 gi (J'6djV(i)V(j) - bWbIX()Xw)). (4.2.27)

Hence on varying Eq.(4.2.25), and inserting it and Eq.(4.2.26) into Eq.(4.2.27);

6J, = Jdt di 1 dt 2 dt 3 (d6EiV()V()- _ft6biX(,)X(,). (4.2.28)

6EiV() and 6b'X() can be straightforwardly calculated for variations of 0 and
A. yielding

-1 did dd 2 d j -d'- ) Vo- qU =0 (4.2.29)

di di dt2 dt3  _ Wi V +9W d(i) =. •
(4.2.30)

The consistency relations
a = -•Vm, (4.2.31)

...
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=Wk -atVk, (4.2.32)

Di

-49iXk; i'jk cyclic permutations of (123), (4.2.33)

and the lumping approximations (V(V, V(j) = 1, (X(), X(,)) = I then bring
Eqs.(4.2.29) and (4.2.30) to the form of Eqs.(4.2.13-4.2.14). Note that the 0

left-hand sides of Eqs.(4.2.25) and (4.2.26) have to be lumped, otherwise even
ior the lowest order conforming elements, these are not explicit formulae for
Pi and Hi. A relatively straightforward refinement to the lumped scheme is
to use simple iterative schemes to improve the approximation. The diagonal
dominance of the mass matrices should lead to rapid convergence. 0

H12 can also be brought to the form (Eqs.(4.2.13-4.2.14) if Eqs. Equations
(4.2.11) and (4.2.12) are put into the weak forms

(/E, -/ j = 0, (4.2.34)

-(H, -/'ggBJ, X(,)) = 0. (4.2.35)
M0

and the discrete coefficients d', b' are introduced so that

d'= (,¢-D 1 , V(,)), (4.2.36)

W = (VlgB', X(,)). (4.2.37)

Thus d' and b are updated, then the coefficients D' and B' (Di - D(NV(j), B' =
B(OX()) follow explicitly from Eqs.(4.2.36) and (4.2.37) if the iumping approx-
imation is made, and finally Eqs.(4.2.34) and (4.2.35) yield E, and H1 .

4.2.3 Hybrid Schemes

It is possible to derive explicit schemes by keeping the point constitutive
relation Eq.(4.2.12) for the magnetic field and the optimal approximation
Eq.(4.2.25) or Eq.(4.2.34) for the electric field. We shall not pursue this option
further here.

4.3 Properties of the Schemes

In this section the lowest order conforming, charge conserving elements are
considered. It will also be assumed that gij and vr are constant everywhere,
corresponding to the case where physical space is split into congruent paral- 0
lelepipeds. Under these circumstances it is convenient to introduce the oper-
ators

Ma I oa+a]2 + [M_]2 + 21 (4.3.1)

6 3
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A'= + (4.3.2) 0

where &* were defined following Eq.(4.2.19). The inner products of basis
functions may be written simply as

) MbMc (i=j=a)

(V, I = AaAbM' (i = a,j = b) ' (4.3.3)

M*M' (i=a j=a)(X",X') = A*AbMt (I = a~j = b) I 434

where a,b and c are a permutation of the spatial indices (123) and t denotes
time. Henceforth we lump in time, i.e. set M' = 1.

For the pointwkie scheme, the constitutive relations take the forms

d' = ov (gIiM2M3El + g 2A1 A2 M 3 E2 +g13A'M2A3E 3) (4.3.5)

H 1  (g,,Mlb + g1 2A1 A2 b2 + gj3 A'A3b3) (4.3.6);i= o-7-"(

Without lumping, the optimal equations for I, are in variables d', b' where
e.g. 0

d- _ý M 2 M 3dI P = MYb' (4.3.7)

and the constitutive relations are e.g.

M 2 M 3 E1 = "- (Y11 M2M3d1 + g12A'A 2 M 3d2 + gj3AAA3M2J3) (4.3.8) 0

M111 = •1 (g91 M•" +g 1 2 A'A 2 -2 +91 3 A'A3b3) . (4.3.9)

For 12 we find that E, is related to d' in the same way that E/ depends on 0 0

and similarly for the magnetic field, i.e. when the gij are global constants, the
optimal 11 and 12 schemes are identical.

Comparing Eqs.(4.3.6) and (4.3.9) shows that the pointwise relatikn for
Hi is equivalent to the optimal one after lumping in space, i.e. setting A' =
1. The effect of lumping is different, in Eq.(4.3.6) it actually sharpens H,,
whereas in Eq.(4.3.9) the off-diagonal terms are smoothed. In the absence
of spatial lumping the pointwise srheme should produce a smoother H, and
might be preferred. However the implicitness of Eq.(4.3.5) means that only
a hybrid scheme would be practicab1 o, and if the M' = 1 such a scheme is
indistinguishable from the fully optimal ones. The difference between the I1
and 12 schemes is slight; the absence of a division by Vg- may be an advantage
for 12 when the elements are very distorted. However if such situations are
avoided, 11 is preferable because its operation count is likely to be smaller.

..... .. ..



|S

J W Eastwood, R W Hockney and W Arter RFFX(92)52 31

4.4 Maxwell's Equations 0

The principal difference between the cartesian and general curvilinear deriva-
tions of the field equations from the action integral (4.2.1) is the need for
approximations to evaluate Eqs.(4.2.4),(4.2.5) and metric tensor elements in
the latter case. Evaluation of the metric elements was dealt with in Section
3.2. Choices of approximations to Eqs.(4.2.4) and (4.2.5) lead to implicitness 0
in computing either E, from di for the circulation term in Faraday's Law or
di from E, in applying boundary conditions; the latter is favoured for compu-
tational simplicity, particularly since the boundary condition is implicit only
for non-orthogonal element nets at external boundaries. The scheme we shall
implement will be the I, optimal scheme, with (at least in the first instance) 6
lumped 'mass' matrices.

All of the Virtual Particle schemes discussed in Section 4.2 yield the ap-
proximations to Maxwell's Equations:

atbi= -eijkOEk O,b' = 0 (4.4.10) 0

Otd' = eikjO Hk - Ii, O,d' = Q (4.4.11)

The precise relationship between quantities b',d', Ej,Hk and the nodal ampli-
tudes depends on the approximations chosen for the constitutive relationships. 0
In the lowest order lumped approximation to the I, scheme they become the
nodal amplitudes.

The analysis leading to Eqs.(4.4.10) and (4.4.11) shows that the discrete
equations in the quantities b',di, Ek,Hk,I' and Q are identical in any coordinate
system. Geometrical information appears, along with the permeability and
permittivity tensors, only in the constitutive relations relating d, to E, and b, 0

to Hi.
Figure 4.1 shows the location of the nodes that arises from the choice of

linear potential representation in three dimensions. Note that the forms of the
'difference' equations Eqs.(4.4.10) and (4.4.11) are identical to those given by 0
the Yee algorithm [13] on a uniform cartesian net. They differ from the Yee
algorithm in the variables appearing in the equations, and the element net is
not necessarily rectangular in physical space.

4.4.1 2-D General Geometry Example 0

Field equations for the virtual particle scheme for quadrilateral elements in
2-D are discussed in this section. As for the cartesian case considered in [6],
we shall focus on the case of linear support. We assume that the general
coordinate P3 is ignorable, i.e. potential and field derivatives with respect to
i3 are zero.

All quadrilateral elements are assumed (without loss of generality) to map
onto unit square elements in the curved (II, i2) coordinate space. If we assume
mixed linear/constant support over the elements in this curved space, as was
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0

3 0

2

1

Figure 4.1: The location of nodes on the unit cube element. Crosses give E1 ,
IP and d' node locations, open circles give Hi and b' locations and solid circles 0
give position and scalar potential node locations.

TM TE

112

b 3

2
b

SA, A3

Figure 4.2: The location of scalar potential, 0, vector potential (A,, A2 , A3 )
and magnetic field (b', b2, b3) nodal amplitudes. Fields Hk have same spatial •
locations as bk and E,, d' and I' have same spatial locations as Ai
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used for the 2-D cartesian example in [6]), then the location of nodal values on
a single elements will be as illustrated in Fig 4.2. These nodes are interlaced
in time. Located at half-integral timelevels are values of A,, b', Hi, I' and at
integral timelevels, nodal values of E,, di, 0 and q are defined.

It follows from the results of Reference [6] that the assembled finite element
node equations can be written in operator form:

Initial conditions:-
0%d' + 2d 2 = p (4.4.12)

o9b 1 + 0b 2  0 (4.4.13)

Transverse Magnetic (TM) equations

Otd'= 92H 3 - P' (4.4.14)

Ad2= -aIH 3 - 12 (4.4.15)

oqb= 023 12 - 01tE 2  (4.4.16)

Transverse Electric (TE) equations

jb' = -012E3 (4.4.17)

Otb 2 = 01 E3  (4.4.18)

atd3 = a1H2 - a2H1 - 13 (4.4.19)

4.5 Constitutive Equations

The weak approximations Eqs.(4.2.25) and (4.2.26) to Eqs.(4.2.4) and (4.2.5),
with lumped mass matrices give the simplest explicit expressions for E, and
H,. Their evaluation gives tensor equations

Ei = GEdi (4.5.1)

H, = GHI9 (4.5.2)

where elements of the symmetric tensors G,ý and G0 are sparse matrices.
The lowest order lumped approximations lead to matrices G,, which are 0

diagonal, and matrices Gj with four nonzero elements per row. Figure 4.3
illustrates this for

E2 = GEd' + Gfd 2  (4.5.3)

E2 is computed at the central node in Figure 4.3 from d2 and G E at that
node, and from d' at the four neighbouring nodes as indicated by arrows.
In general, different values of GE are associated with each arrow. In three
dimensions, GE d3 gives similar contributions from the four neighbouring nodes
at which d3 are stored.

0
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- /

x -

Figure 4.3: Computation of E2 at the central node using the lowest order lumped
approximation to Eq.(4.5.1) involves values of d2 at that node, and from dI at 0
the four neighbouring nodes as indicated by arrows.

4.6 Algorithm Summary

Four different schemes for solving Maxwell's equations have been derived, and
their relative merits examined. All have the desirable attributes of being charge
conserving, having good dispersive properties and being well suited to parallel
computer implementation. For the situation where lumping is a good qual-
ity/cost compromise and the finite elements are not too distorted, the optimal 0

I, scheme with lumping appears most suitable; it is this scheme that will form
the basis of the benchmark program.

Local block coordinates. The multiple decomposition divides the com-
putational space into a set of curvilinear quadrilateral (hexahedral) blocks.
Each of these blocks has associated with it a local cartesian coordinate sys- 0
tern, which is related to the global cartesian coordinates by some translations
and/or rotations. For the purposes of integrating Maxwell's equations for ten-
sor components forward in time, only the metric tensor is required, but for
extracting physical components of the field, and for the particle integrations,
knowledge of the transformation between cartesian and curved space coordi- 0
nates is required.

Fixed timestep. All curved space finite elements are chosen to be cubes
with unit sides. For the present discussion, we shall further assume that a
fixed timestep of unity in the curved space is used, although this assumption
can be straightforwardly relaxed.

Dimensionless units. For fixed timestep, it is convenient to introduce
dimensionless units for physical space quantities. These imply the scaling fac-
tors summarized in Table 4.1 to convert the quantities appearing in Eqs.(4.6.1
) - (4.6.8) into SI units. In the table, po, co and c have their usual meanings,
At is the timestep, Eo is some reference electric field (to be set to simplify the
particle equations) and Z0 = poc = 377fl is the impedance of free space.

Coordinate transformations. Given the basis vectors e, and e' and
the local block cartesian with unit vectors are ki, the electric field E may be

0,

I I- I i il lllll i iml ml ~ m i • m, l. • • .i l .. .
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Table 4.1: Scaling factors to convert quantities to SI units 0

Quantity Scale factor

electric field Eo
magnetic field Eo/c

length cat
time At

velocity c 0
basis vector (ei) cAt

reciprocal basis vector (e') l/cAt
metric tensor elements (gio) (cAt) 2

AI, 0, Ej, b' EocAt2

d', P, Q EocAt 2/Zo 0
Hi EocAt/Zo

permittivity (c) Co
permeability (p) PO

written
E = , Eve' (4.6.1)

where A7, are the local cartesian components of the physical electric field, and
Ej are the covariant components.

Dotting Eq.(4.6.1) with ej gives

E, = (e,. *c2)Ej (4.6.2)

which may be written in matrix notation E = TE, where the 3x3 matrix T has 0
elements T7, = ej • ij. Similarly, the physical magnetic intensity i is related
to the covariant components Hi by

Hi = T,-Hli (4.6.3)
0

The evaluation of ej and thence T7, was treated in Section 3.2.

4.6.1 The Timestep Loop

The timestep loop for the integration of the field equations deals exclusively
with tensor field components. The input from the particle integration are the
contravariant currents IP, and the output to the particle integration are field
components E, and b'. Details of the particle integration and boundary con-
dition will be discussed later. The finite element field equations are assembled

•0
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within each block, and glue patch data exchange is used to complete the as- 0
sembly at block surfaces. This leads to the following steps in the timestep
loop:

1. compute current from particle move

2. obtain H from b in each block 0

(H-g'- )) = 0 (4.6.4)

3. compute displacement currents contributions in each block 9

S=' -H-ey'() OW - I i W(±l ) (4.6.5)

4. assemble j' contributions at block surfaces by gluepatch data exchange.
This step applies the 'internal' boundary conditions: e.g. periodic, sym-
metry, neumann and domain decomposition boundary conditions

5. update &i and apply surface boundary conditions (conductors, resistive
walls, external circuit couplings, etc) to d". At internal boundaries, the
new d' is computed from 0

(-d(') = d' (4.6.6)

6. obtain E from d in each block 0

(V,(E, - -Lb34)) 0 (4.6.7)

7. assemble E, contributions across internal boundaries by glue patch data
exchange 0

8. apply surface boundary conditions to E,

9. advance b' in each block
Ogb' - eJek(4.6.8) *

10. compute particle accelerations

In the above equations, lowest order lumping is used to make the field
equations and constitutive relations explicit. Otherwise, iteration or direct
solution will lead to further message passing between blocks as d', E,, etc are
refined. Items (1), (4) and (10) are dealt with in more details in the next two
chapters.

i m ml mm• mm amm i ma~i~mamm ~ im. mlm mdlw~m mmm.,a.m . • • w l "_•0



Chapter 5

Particle Equations

This chapter presents the Virtual Particle charge and current as-
signment schemes in general curvilinear coordinates for the linear
basis function finite elements discussed in the previous chapter for
Maxwell's equations. Assignment is the same in all coordinate sys-
tems and has the charge conserving property. Treatment of the
equations of motion using curved space coordinates for positions
and cartesians for momenta are outlined.

5.1 Variational Formulation

In general curvilinear coordinates (.1, i2, P3) the action integral may be
written

I = dt d±' 1 dt2d&3i { (E, D' - Hi B') + j Ai - p-} + IK (5.1.1)

where IK is the kinetic lagrangian. If we further assume that the distribution
function is represented by a set of sample points (ie 'superparticles'), then the
source terms in the field lagrangian become S

= .-- ± - )- 0-)'X (5.1.2)

and the kinetic lagrangian term becomes

=K f di EMc2  (5.1.4)p % •

The sums in p are over particles, each with charge qp.
Treating I as a functional of the vector potential A,, the scalar potential

4' and particle coordinates {xp) led to Euler-Lagrange equations representing

37
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Maxwell's equations; as shown in the previous chapter, the discrete approxima-
tions to these differential equations are obtained by substituting test function
approximations for 4), Ai and xp and taking variations with respect to the
nodal amplitudes.

The use of sample points ('superparticles') reduces the velocity space in-
tegrals to sums over particles, and transforms the Vlasov equation to the rel-
ativistic equations of motion for the superparticles. Source terms, Eqs.(5.1.2)
and (5.1.3), arise from variations with respect to potentials in the differential
limit. These variations give the charge and current assignment schemes in
the finite element case, as illustrated in Sections 5.2 and 5.3. Section 5.2.1
shows that the assignment has the charge conserving property even for non-
orthogonal element nets. In the differential limit, variation of the action with
respect to particle coordinates gives the relativistic momentum equation.

The treatment of the equations of motion is outlined in Section 5.4 In prin-
ciple, the equations of motion can be obtained from Eq.(5.1.1) by considering
variations with respect to particle positions. In practice, this has proved too
arduous except in the limit of infinitessimal timestep, and so recourse has been
taken to the conventional finite difference methods to discretise the equations
of motion in time.

5.2 2-D Assignment 0

The finite element test function approximations to the potentials may be writ-
ten 4 = OU and A, = A(i)W(,), where 0 and A are nodal amplitudes, and
sums are implied over element nodes (cf Ref [6]).

Variation of Eq.(5.1.1) with respect to 0 yield charge assignment:

Q= fdt~qpU((t ,2 ±,)(t),t) (5.2.5)
p

Similarly, variation with respect to A gives current assignment: 6

'i = atd qP')W(i)((±p,- ±, -2 )(t),t) (5.2.6)
p

The integrals for Q and IV are evaluated in exactly the same manner as
described in Ref [6]. For example, if in a general quadrilateral element U and

Wi have the same linear / piecewise dependence as their cartesian counterpart
[6, Section 4.3], then the fractions of the charge assigned from a charge qp at

position (±t ,t2) (marked by open circles) to the four nodes at the corners of
the element as shown in Figure 5.1(a) are given by 0

bQNW = qp(l - 21))2 bQNE = qpt, 1j2 (5.2.7)

bQSE = qp'(l -_ t2) 6Qsw = qP(0 - 2')(1 - i 2)
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N , SW 1S Ei

Figure 5.1: (a) Charge assignment (rom a single particle and (b) current as-

signment from a single particle trajectory segment for linear potential test func-

tions. The figures at the left and right are respectively physical and curved space

representations.

Similarly, evaluating Eq.(5.2.6) for the transverse magnetic (TM) contravariant

current components from a trajectory segment from (.i, .t) to (±/, ±/) yields

b[N = qpX 2AtI b1s = qp(1 - X2 )AW' (5.2.8) 0

61E = q6IIAt2 b1w qp(l -fCI)Aj2

where XV= (" + k)/2, A?•• -- -, where k=l or 2. Coordinates (-tk± )
and (t, k ) are respectively the start and end the trajectory segment (solid

line in Figure 5.1(b)) in the finite element. Trajectory segments are assumed to

be straight lines in the curved (±1,12) space. Figure 5.1(b) shows the position

of the virtual particle at (fkj Xk) as a small open circle on the trajectory

segment and labels the location of the current nodes referred to in Eq.(5.2 .8).

The t3 direction current components leads to terms quadratic in the path

parameter, and will so lead to two virtual particles being required to give

thc trej.,ory segment cnr.tributions to the r-,rrents at the four corner nodes.

Figure 5.2 shows the virtual particle locations for the TM and TE current

components from the same trajectory segment in curved space. The 13 current

require contributions from two virtual particles, at positions

(x 1 , f 2) ± (A_, At2)/2V•i,

both with strengths At 3/2. Summing the contributions of the two virtual
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N NW NE

a) b)

..... s . . S"

Figure 5.2: Current assignment a) for TM current components and b) for the
TE (= 13) current component. The open circles show the locations of the virtual
particles on the trajectory segment (solid line) lying in the current element.

0

particles gives

bSsw = At 3 (1 -- f,)(1--))+ - X2+(5.2.9)

b5 INW = Az 3 (I - fc')X 2 
- 2 (5.2.10)

b1NE = Ai 3 9.V2 + 12P J (5.2.11)

6 1SE = A~Z [X1(1 - X"2) - 12 (5.2.12)

5.2.1 Charge Conservation 0

Charge and current assignment are linear operations, so by linear superposi-
tion, conservation for one trajectory moving through a single time step im-
plies the same for the sum of all trajectories. Summing all contributions to
Eqs.(5.2.8) from a single particle, gives the same as the difference of Eqs.(5.2.7)

at start and end points, ie the linear quadrilateral (hexahedral in three dimen-
sions) element case satisfies

OtQ = -aklk (5.2.13)

where the symbol 0 denotes a centred difference arising from assembling the
finite element contributions, and Q and Ik are nodal amplitudes. Equations of
the form (5.2.13) can be shown to be generally satisfied for VP algorithms.

0
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5.3 3-D Assignment

5.3.1 Charge

If we ltel nodes on the unit cube element (i,j, k) and write the assignment
fun- ,on in terms of its product parts

U,,& (', 32, 33, I) = w,(.i')w,(± 2 )wk(±3) (5.3.1)

From Eq.(5.2.5), the charge assigned to element node (i,j, k) where i,j, k = 0
or 1 from a charge qp becomes

Q,,k = qpw,(±')wJ(±2 )wk(±3 ) (5.3.2)

where
Wo(X)= 1- ; w1(x) = x (5.3.3)

(tI, ±2, 23) is the displacement of the particle position from the element corner
(0,0,0).

5.3.2 Current

Using the impulse approximation to particle motion as described in [6]. and the
factorisation of W reduces, Eq.(5.2.6) to the contribution of a single particleto

1= ½dsqA'w,(. 2 + sA2 2)Wk('f(3 + sA±3) (5.3.4)

The quadratic integral is evaluated exactly by point Gaussian quadrature, so
Eq.(5.3.4) can be written as the contribution from virtual particles at x:.:-

=k qp W f(.t2)Wk( 3) + W,(±t2 )Wk (±t35..5

where AV = '1 - 2' are components of the length of the trajectory segment
in the current element, and X' = (± + .i,)/2 are the components of the mean
position. Indices j and k take values 0 or 1. The positions of the virtual
particle have coordinates - AV'

,= X± (5.3.6)

The corresponding expressions for current components 12 and 13 are given

by simultaneously cyclically rotating component indices (123) and node indices 0
(Ijk).

Figure 5.3 gives a cartesian space sketch of assignment according according
to ,- Eq.(5.3.2) for charge and b) Eq.(5.3.5) for current.

In practice, it more convenient to evaluate explicitly the integrals for P'
rather than use quadrature. Equation (5.3.5) then becomes S

= q'A'f, [w,(f2)w,(x3) + (j _ 1 )(k - ) A 2 3] (5.3.7)

and similarly for P2 and 13 by cyclic rotation of indices.

0

_*
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• | ,o , .,

oil

010

Figure 5.3: (a) Charge assignment from a single particle and (b) I current
assignment from a single particle trajectory segment for linear potential test
functions in physical space.

5.4 Particle Motion

5.4.1 Positions

The change in particle position is computed in the same manner as the carte-
sian case. The change of position is computed from the leapfrog approximation

?k(n + 1) = ?k(n) + fk(n + 1/2) (5.4.1)

to •
-- = • (5.4.2)

where argument n is used to denote timelevel.
The evaluation of Eq.(5.4.1) requires the computation of yk from the mo-

mentum. To avoid the explicit treatment of the Christoffel symbol in the S
momentum equation, momenta are stored in terms of their local cartesian
components. These components are in units of moc, where m0 is the rest mass
of the species in question.

Given the cartesian momenta p =p, k, the contravariant components are
given by 0

,= '.efi' (5.4.3)

or in matrix form
= TTp (5.4.4)

The relativistic gamma is given by

'- = --V-. (5.4.5)

Hence Eq.(5.4.1) may be written in matrix form

2(n + 1) = 2(n) + (TT)-fIpl/ (5.4.6)

Note that Eq.(5.4.6) is not properly time centred unless T is evaluated at the
half timelevel, in which case the equation becomes implicit. In the first in-
stance, we shall use the explicit approximation, although this can be refined by

I 0
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using some simple predictor-corrector on Eq.(5.4.6), or by solving the cartesian
space form of Eq.(5.4.1) and transforming the cartesian coordinate to curved
space.

5.4.2 Momenta

The finite element approximation in space and time for the particle accelera-
tions leads to unwieldy expressions; consequently, we have replaced the time
derivative by a finite difference. Treating the momentum equation in curved
space introduces the Christoffel symbol FL in the quadratic centripetal term:

di_ _= Fk = q(Ek + ekl,,,ylb) (5.4.7)

A more straightforward approach is to use the cartesian leapfrog scheme
for the momentum dp

T = q(E + v x B) (5.4.8)

The local cartesian components of the electric and magnetic fields can be found
using the contravariant basis vectors. Using matrix notation and T as defined
in Eq.(5.4.4), the cartesian electric field is related to the covariant components
by .

P = T-'E (5.4.9)

and the cartesian magnetic field components are given by

= TTb/det(T) (5.4.10)

With the choice of field units
2moc

E0 = 2mc (5.4.11)qAt

the resulting leapfrog approximation to Eq.(5.4.8) becomes

p(n + 1/2) - p(n - 1/2) = 2E + (p(n + 1/2) + p(n - 1/2)) x B/-y (5.4.12)

which is readily solved using standard methods [12, Chap 4].

0'
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Chapter 6

Boundary Conditions

This chapter summarises the application of interior and exterior
boundary conditions to both the field equations and the particle
equations. 0

6.1 Introduction * 4

The field boundary conditions fall into two classes: interior and exterior. In-
terior boundary conditions are those where the computational domain is ex-
tended to complete the assembly of Ampere's equation at boundary nodes.
Instances of the interior boundary conditions are periodic, Neumann (sym- 0
metry) and glue patch boundaries. Their application involves adding some
'external' contribution to Otd' from elements of the same form as those in the
body of the computational domain. Interior field boundary conditions are
treated in Section 6.2.

Exterior field boundary conditions (Section 6.3) couple the Ampere's equa-
tion for boundary nodes to external circuit equations relating surface currents
to surface fields. The simplest external circuit is the perfect conductor, where
tangential electric fields are zero. If nonzero tangential fields are applied at the
conducting wall boundary, then one obtains the fixed applied field boundary
condition. Slightly more involved is the resistive wall, which differs from the S
perfect conductor in that tangential electric and magnetic fields are related
by a nonzero surface impedance. More general external circuit couplings at
boundaries, involving inductance and capacitance lead to differential equations
relating surface electric fields to surface currents.

Particle boundary conditions may be likewise classed as interior or exterior.
Interior conditions follow the same classification as the fields, and exterior
conditions are either particle emission or absorption. These are treated in
more detail in Section 6.4

4
45
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6.2 Fields at Interior Boundaries

For all cases, the application of interior field boundary conditions involves
assembling contributions to d (Eq.(4.6.5)) across adjacent block boundaries.
This assembly is performed by adding in the gluepatch contributions. Figure
6.1 illustrates the gluepatch data transfer. Data stored on the logical (/,j, k)
lattice of nodes in block 1 are copied to the gluepatch, and then data is added 0

from the gluepatch to the corresponding node on block 2. On both source
and target blocks are reference points (solid circles and crosses in Figure 6.1)
which specify the location and orientation of the blocks with respect to the
glue patch. The reference points are used to perform the field component and
indexing transformations between blocks.

gluepatch

block 1 block 2

Figure 6.1: All interior boundary conditions are applied by passing data between
blocks via gluepatches.

I0

Two types of field gluepatch are required:

Surface patch to exchange the two tangential field components with nodes
common to the faces of two blocks.

Line patches to exchange the one tangential field component with nodes
common to tbe edges of four or more blocks.

Interior boundary conditions are applied by adding the gluepatch values

&,,to the corresponding node accumulator

d:=d+ ole(6.2.1)0

A simple example of the use of gluepatches is to apply doubly periodic
boundary conditions to a 2-D rectangular domain. Four gluepatches are re-
quired: two surfaces patches to connect the north to south boundary and

commn tothe acesof to blcks

Lin pache toexhane te oe tngntil feldcomonnt ithnods
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the east to west boundary, and two line patches to connect the NE to SW
corner and the SE to NW corner. Gluepatch exchanges are required twice
each timestep, once for d' to complete the integration of Ampere's equation,
and once for E, to complete the computation of E from d in evaluating the
constitutive relationship.

6.3 Fields at Exterior Boundaries

Exterior boundary conditions are applied to blocks through boundary con-
dition patches, which are stuck onto the blocks in the same manner as the
gluepatches, only now they connect to external conditions rather than to an- 0
other block.

If we let E, = -n x (n x E) be the (physical) electric field tangential to the
boundary surface whose unit normal is n, then exterior boundary conditions
may be summarised as follows:-

Ej = E : specified applied field (6.3.1)

Ej = 0 : perfect conductor (6.3.2)

Et = Zj0 : resistive wall (6.3.3)

Et = Ej(j,) circuit equation (6.3.4)

E is the (given) applied field, Z is a given surface impedance, and jo (curl (H))
is the surface current. The circuit equation case is in general a differential
equation in time relating Ej to j. of which Eqs.(6.3.1-6.3.3) are special cases.
For the present discussion we shall limit ourselves to the three special cases
listed.

The ease with which the boundary conditions can be applied depends on
the nature of the finite element not at the boundary surface. We identify four
different cases

"* orthogonal nets

"* boundary orthogonal nets

"* surface orthogonal nets

"* general curvilinear nets

The first three cases usually lead to local surface equations for the fields
which are explicit, whilst the fourth leads to all implicit equations which has
either to be solved by iteration, or lumped further to give explicit expressions
for displacement fields.

Boundary conditions are applied to Ampere's equation through prescribed
(contravariant) displacement fields and/or displacement currents at boundary

0'

0 "
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nodes. Boundary conditions on Faraday's equation are applied by prescribing
the corresponding (covariant) electric fields.

We shall consider the application of boundarv conditions to surfaces per-
pendicular to basis vector el, as illustrated in Figure 6.2.

el

e 3

Figure 6.2: Basis vectors e2 and e3 lie on surface perpendicular to reciprocal
basis vector e1

6.3.1 Applied Field 6

The applied field boundary condition sets the surface tangential electric field
to some specified value E, so that at the surface.

n x (E - E) = 0 (6.3.5)

For the face illustrated in Figure 6.2, n = el/le' l, so Eq.(6.3.5) yields e' x
(E - E) = e' x ei(Ei - Ei)

I -(e 3 (E2 - E2) - e2(E3 - E3)) (6.3.6)

Taking the dot product of Eq.(6.3.6) with e2 and e3 gives the covariant field
component boundary conditions

E2= E2 ; E3 = E3  (6.3.7)

In the continuum limit, Eq.(6.3.6) can likewise be written in terms of the 0
contravariant fields:

E2 . e 3 E3 e3. el
d' - d' d dd' (6.3.8)I• el e 12 1v el 1' 2

"0

I m Z= Illml~m m tm= mr*
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For the boundary orthogonal case, e' x el = 0, and Eqs.(6.3.8) reduce to 0
simple Dirichlet conditions for do and d3 :

2 E2 E 3

d 2 =- ; d - (6.3.9)

One possible approach to handling the boundary conditions in the simula- 0

tion code is to use Eqs.(6.3.8) in a pointwise fashion at boundary nodes. A
more consistent approach is to use Eqs.(6.3.7) for the covariant fields, and the
lumped finite element constitutive relations to solve for d2 and da at boundary
nodes:- E2 = G21d1 + G22d2 + G23 d' (6.3.10) 0

E3 = G31d' + G32 d2 + G3d 3  (6.3.11)

For boundary orthogonal elements (G 21 = G 31 = 0), conditions of the form
Eqs. (6.3.9) may again be recovered.

For surface orthogonal elements, G23 = 0, and Eqs.(6.3.10 and 6.3.11) 0
reduce to

d2 = G22
1(E2 - G21d') (6.3.12)

d3 = G3- (E3 - G31d') (6.3.13)

In two dimensions (where the 3 coordinate is negligible, say, and G23 = G31 = * 4
0), explicit equations of the form Eqs.(6.3.12) - (6.3.13) can always be found.

For general curvilinears, Eqs.(6.3.10 and (6.3.11) lead to the matrix equa-
tions for d2 and d3

(G22 - G23 G-'G 32)d2 = (E2 - G23 GC3
1E3 )+ G21 - G23 G•3G 31 )d1  (6.3.11)

(G33 - G 32G-G 23 )d3 = (E3 - G32GCE 2) + (G31 - G32G-'G 21)d' (6.3.15)

which are discrete analogues to Eqs.(6.3.8).

6.3.2 Perfect Conductor 0

Perfect conductor boundary conditions differ from the applied field case only
in that the applied field is zero.

6.3.3 Resistive Wall 0

The resistive wall boundary condition, applicable for small skin depth surfaces,
relates the surface current j, to the tangential electric field at the surface:

n x H = (6.3.16)

- n x (n x E) = Zj, (6.3.17)

For the surface shown in Figure 6.2, n = el/ eI , and Eq.(6.3.17) gives

el x (E - Zj.) (6.3.18)

0
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Following the reasoning given above for the applied field case, the surface 0

covariant fields satisfy
E2 = Zj, ; E3 = Zij, (6.3.19)

The corresponding equation to Eq.(6.3.8) is

d2- _Zj2 = d' e2 e' d1 ee -Z (6.3.20)

and Eq.(6.3.14) is replaced by

(G22 - G23G, G3 2)(d2 _ IZJ2 ) = (G21 - G23G-G 3G)dl (6.3.21)

The evolutionary equation for d2 is obtained by using Eq.(6.3.21) to eliminate
the surface current, 12, from the finite element assembled equation for the
surface nodes.

0

6.4 Particles at Interior Boundaries

Each field surface gluepatch has a corresponding particle gluepatch. Particles
passing through a gluepatch from a source block to a target block are passed 0
from the storage areas of the source block particle tables to that of the target
block via the gluepatch buffer.

Position coordinates are transformed from the curved space components
of the source block to those of the target block. Momentum coordinates are
converted from the local cartesian coordinates of the source block to those of
the target block.

6.5 Particles at Exterior Boundaries

Particles are lost from the simulation domain by absorption at exterior bound- 0
aries, and are introduced by emission at boundaries.

Emission is determined by additional physical models. For example:

Thermionic emission, where surface electric fields draw electrons out of a
cathode surface boundary layer. 0

Secondary electrons, whose distribution is determined by impacting parti-
cles and boundary material properties.

beam injection, where external sources determine density and momentum
distributions.

, 0
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Chapter 7 T

Data Organisation
0

This Chapter outlines the data organisation. A multilevel tabular
approach is proposed in order to obtain efficient MIMD implemen-
tation whilst maintaining flexibility. 0

7.1 Introduction

The data organisation problem to be resolved is how to map a multiblock de-
composition of a complex microwave device onto a distributed memory MIMD
computer such as the Intel iPSC or a Meiko i860/Transputer MIMD comput-
ers. The objective is to maximise program portability and flexibility without
compromising efficiency.

The principal unit of decomposition is the uniblock - which carries both
field and particle data from a volume of space. To handle complex shapes,
some blocks will need to be small, whereas for simple shapes, physical bound-
ary condition constraints allow large blocks. If desired, large blocks can be
subdivided to facilitate mapping onto the MIMD computer. The data organi-
sation must also allow several small blocks to be collected together on a given 0
process to obtain effective load balance.

Section 7.2 illustrates the multiblock decomposition for a coaxial to cylin-
drical to rectangular waveguide junction. The global and local data organisa-
tion required for such a decomposition is treated in Section 7.3. Section 7.4
proposes a data storage within the block which allows metric data compression 0
for blocks with symmetry and orthogonality properties.

7.2 The Mesh

Figure 7.1 shows the multiblock representation of a cylindrical device with an

attached waveguide. Each block is subdivided into elements, and the same
parameterisation is used for the coordinate transformation as is employed for
the scalar potential (cf Chapter 3).

51
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Figure 7.1: An illustration of the meshing of the junction of a coaxial and rect-
angular guide. There are six blocks:the rectangular guide, the central cylinder
and four in the annulus.

The multiblock subdivision of the computational domain minimises the
amount of global data and interprocessor message passing, and simplifies load
balancing across processors. Each slave block only requires data from its neigh-
bours, and the master control program only requires information about the
block surfaces ('glue patches') which join the slave blocks together. This ar-
rangement offers the prospects of large computational intensity and a weak
Amdahl limit to speedup on distributed memory MIMD computers. More-
over, the simple logical cube addressing within each block leads to fast serial
processing.

Without compromising the subdivision of the spatial mesh into blocks to
get efficient MIMD processing, one can further demand that boundary con-
ditions only apply at the surfaces of blocks; this eliminates the addressing
problems in embedding surfaces within blocks, and allows surface data to be
passed to the control program through the 'glue patch' tables. Further saving
of computer storage and time arise from keeping metric informati-n and ma-
terial property data only in those blocks where they are needed. When many
small blocks are used to describe a complex object, load balancing is achieved
by assigning several blocks to one processor.

In summary, the efficient meshing strategy uses

* A multiblock spatial decomposition where segments of target surfaces
and other boundaries are coincident with block surfaces.

.'
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10 0

7 •

20

4,

Figure 7.2: The curved space schematic of the device in Figure 7.1. Blocks
transform to rectangular bricks connected by gluepatches (indicated by arrows). •

"* Indirect ('glue patch') addressing between blocks, and logical cube (ij,k)
element nets within blocks.

"* Transfinite interpolation to divide the curvilinear hexahedral multiblocks •
into finite elements

Figure 7.2 gives a 'curved space' schematic of the device illustrated in Fig-
ure 7.1 with an additional multiblock extension to the rectangular waveguide.
The bottom five blocks correspond to the central cylinder and annulus. The 0
arrows indicate block faces connected by gluepatches. Block 6 is the connec-
tion from the annulus (block 2) to rectangular guide (blocks 7-10). Blocks
7-10 have been included to illustrate the need for extra line gluepatches for
the field solver when more than three block edges meet at a line.

Figure 7.3 summarises the timestep loop operations for a general uniblock. 0
The uniblock (Figure 7.3(a)) has regular mesh of unit spacing (in curved
space). Its surface is either covered by boundary patches or is connected
to surface glue patches (plus line patches at edges). All boundary conditions
and exchanges of particles and fields between uniblocks are handled via the
gluepatches and their buffers. If dynamical load balancing is excluded, the 0
only interprocess communication required is the exchange of gluepatch buffer
information between pairs of contiguous blocks.

Figure 7.3(b) gives the steps of the timestep loop for the uniblock. The
first part gives the updated particle momenta, positions and currents, and

0

0
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I partices

(b) LOOP

move

H-Gb
admce d

bcond
E-Gd
bc on E ed
&dsano b

Figure 7.3: (a) the uniblock surface is covered by boundary or glue patches. (b)
the timestep loop for a uniblock.

exchanges particles with neighbouring blocks and boundaries. This part is
complete only when all the particle exchange buffers are empty. The second
part is the field solver, where the update of Ampere's equation leads to the
exchange of displacement fields, and the update of Faraday's equation leads to 0
the exchange of electric fields. The inner loop over the boundary conditions
is relevant only where necessary for the three dimensional general geometry
case.

7.3 Data Addressing 0

Figure 7.4 summarises the global addressing and division of data in global and
local. The MIMD virtual particle simulation program treats a microwave de-
vices as a collection of uniblocks connected together by a network of gluepatches.
Each gluepatch is glue to two connecting block faces (or block edges in the 0
case of line patches), so that the complete network can be described by stating
the positioning of the two faces of each gluepatch on the uniblocks.

There are four levels in the global addressing of this network: the proces-
sor, process, block and patch:

Processor: Since we want the same program to run with the minimum
changes on many different parallel computers, a distinction is made between
the logical processes used in the program and the physical processors of the

0
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-GL•Q LDATA I LDA&LADDRE]SS LOCALDATI

p ocessor

process

L0

slpocies can the block t out particle dawa t

bc attributes patch ptch ibuffer

Figure 7.4: Data Addressing

MIMD computer. The translation between logical program processes and
physical processors can then be kept to the outermost level, where the pro-
gram is interfaced with the particular parallel computer on which it is to run.

Although there is a one-to-one correspondence between a logical process and
a physical processor, the numbering of the processors and their physical con- 0

nectivity (e.g. hypercube or mesh) is highly system-dependent. Subroutines
and tables will be provided to translate rapidly between the above logical and
physical numbers. By this method we can move to a new MIMD computer by
making a few changes to a small number of tables and subroutines, without
altering, in any way, the bulk of the complex simulation program. The pro-
gram is, therefore written in terms of processes which may be thought of as
logical processors, and which are translated to physical processor numbers by
these tables.

Process: Several blocks may be computed on each processor of a MIMD
computer, and the balancing of the computational load between the processors
is achieved by moving blocks between processors, until the computational load
is roughly equal on all processors. Remembering that the program is to be
written in terms of processes, load balancing can be achieved by moving blocks
between processes. The distribution of the computation across the parallel
computing resource is then described by stating which blocks are on which
processes.

0

S

__________I
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Block: The block addressing points to the global block data - its location
in space relative to some global coordinates, blocktype and global particle
attributes. The block type data will contain metric coefficients needed by the
field solver and contravariant basis vectors used by the particle integrator.

Patch: All the exchange of data between blocks will be performed through
an exchange patch subroutine. This must recognise whether a target patch to
which it is to send data is a patch on a block belonging to its process, or on a

block being computed by another process. In the former case, a memory-to-
memory copy of the data is performed, and in the latter a message is sent to
the target process.

Two way addressing between the four levels is proposed to simplify coding;
blocks can be addressed by process and process by blocks, and similarly for
processor/process, and block/patch. Direct addressing links are summarised
by the arrows in Figure 7.4.

7.4 Uniblock Data Storage

Particle and mesh data in each uniblock will be stored in a similar fashion to
that described in [5] Particle coordinates are grouped by species, and mesh
data is mapped onto one dimensional arrays.

The nodes for the mesh data are indexed as follows

" Each block of the multiblock decomposition of the computational domain
comprises n, x n2 x n 3 elements.

" The active block domain comprises elements numbered (0, 0, 0) to (nh -
1, n 2 - 1,n 3 - 1).

" The nodes in the active block are labelled (i,j, k) = (0, 0, 0) to (nin 2, n3 ).
Where necessary (ie on the i = njj = n2 and k = n3 planes), an extra
padding layer of elements is introduced.

" Optionally, there may be extra bordering layers of elements introduced
onto the block. The depth of the border is (lbi,lb2,1b 3 ) in the (ij,k)
directions respectively.

The meshing of the block is illustrated in Figure 7.5. There are N, =
(n. + 21b. + 1) elements and nodes in the a direction.

The total number of data values stored for each scalar field (or vector
component) is

Nx N2 x N3  (7.4.1) 6

The node locations on each element are sketched in Figure 7.6 and summarised
in Table 7.1. The locations are the positions of the nodes for the unit cube
element in curved space.
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Figure 7.6: The location of nodes on the unit cube element. Crosses give Ei,,

I' and d' node locations, open circles give H, and b' locations and solid circles

give position and scalar potential node locations.
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Table 7.1: Node locations and active index ranges 0
components locations active index range of nodes

E, d' (IP) [00](101)(110)(111) (0,ni - 1) (0,n2) (0,n3)

E3 d2  (12) [00](0-1)(110)(111) (0,n1) (0,n2 - 1) (0,n3)
[001](011)(101)(11) (0,n 1 ) (0,n2) (0,n 3 - 1)

H, b1  [01221(2) (0, n) (0,n2 - 1) (01n3 - 1)/-/2[1 bjz Z](.2
H2  b]2 (0 1 ) (0,n 1 - 1) (0,n 2 ) (0,n 3 - 1)
H3 bS 1H0]( 21) (0,n 1 -1) (0, n 2 -1) (0, n 3 )
e, [000](100)(010)(001) (0,nj - 1) (0,n 2 - 1) (0,n 3 - 1)

(111)(011)(101)(110) .•_

Only those nodes with the smallest indices are deemed to belong to the
element; in the Fortran implementation these nodes have the same indexing as
the element. In Table 7.1, the node belonging to the current element is shown
in square braces [...], the remaining locations are nodes on its boundaries 0
belonging to neighbouring elements - hence the use of a padding layer.

To simplify the coding of the cyclic interchange of indices and of compressed
storage of basis vectors and metrics, the multidimensional elements described
above will be mapped onto one dimensional arrays in the Fortran coding. The
mapping will be performed as follows:- 0

"* By (arbitrary) choice, the components of a vector field are stored as three
successive scalar fields. (This enforces D = 1 below).

" All three dimensional scalar fields are explicitly mapped onto one dimen-
sional arrays as follows:-

Element i,j, k is stored in location

loc(ijk) = f1 + i x 11 + j x 12 + k x 13 (7.4.2)

where

Q = mesh origin

11 = D = dimension (I for scalar, 3 for triplet, etc)

12 = 1x 1 NI
13 = 12 XN 2

N0  = n0 + I + 21b,

The origin is chosen so that (ij, k) corresponds to the element with its
corner at the origin of the active domain. Thus, to avoid overwriting 0
before the first element of the array the origin 0? must satisfy

0 > fl,,= 1 + lb, x 11 + lb2 x 12 + lb3 x 13  (7.4-3)

I ! 0
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If vectors are stored as successive components, then the successive mesh
origins are at

112 = 0l1 +NI N2 N3

fl3 = f12 + NN 2N3  0

The advantages of this data storage method are

1. it allows the same code to be used for 1, 2 and 3 dimensional cases.

2. the same code is applied to all three components by using an outer loop
which cyclically loops through components.

3. by defining separately the increments for the metric tensor components
(and for basis vectors in the particle acceleration computation), com-
pressed storage of metrics can be employed.

The storage advantage of the last item becomes apparent when comparing
storage of G11, say, for the extreme cases of a uniform cartesian block and a
general curvilinear block in 3-D: The former requires one floating point number
to be stored, whilst the latter requires n1 x n2 x n3. •

0 ,
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LPM2 BENCHMARK

(Intel native communications) I

1 Roger Hockney and James Eastwood I
May 1993

First Read the directory picpac2.d (7.5MB) from the Sun tar cartridge tape
to the computer file system, with a UNIX command like (use 150MB drive):

tar xvf /dev/rst0 picpac2.d ... on a SUN
or tar xvf /dev/rmt0 picpac2.d ... on an IBM

The following is the ReadMe file in directory picpac2.d

DESCRIPTION

The Local Particle Mesh (LPM2) Benchmark was written for the USAF to measure
the parallelization properties of the new Electro-Magnetic PIC code for the 0
simulation of MILO type devices on massively parallel computers (MPPs),
such as the Intel iPSC/860 and Intel Paragon.

This version uses the Intel native communication library (csend, crecv etc).
Conversion to other systems can be made by placing appropriate alternative
communication calls in subroutines NODASG (clsl2z.f), XPATCH (c2s3lz.f) and •
benctl.f only.

The program can be run with or without graphics. Simple graphics is provided
to use as a demonstration and as a check on the validity of the calculation.
The geometry of the device is drawn before the timing period, with the region
computed by each process shown in a different color (although there are only
four colors which are cycled through). Only the boundaries of the blocks are
drawn, because the mesh itself is too fine. After the end of the timing
interval, all the particles are drawn (in the appropriate color for each
process) on top of the device diagram. Printed output of the benchmark
timing data and performance is sent to the screen and also to an output file.

The device is made up of blocKs, and parallelization is achieved by assigning •
blocks to processes within the program (NODASG and SETDMP), and external to
the program by assigning processes to processors (or nodes). The program
is designed to allow dynamic allocation of blocks to processes, but the
benchmark program uses a fixed allocation. Allocation of processes to
processors, depends on facilities provided by the parallel computer. In this
version for the Intel computers, we assume one process to each processor. 0

Interfacing the graphics to a new computer system is tricky, and we recommend
that benchmark times be made without the graphics display. The program
has in internal check on the validity of the calculation, based on comparing
the total number of particles at the end of the benchmark run with a
reference number (obtained from a valid one processor calculation). If these
numbers agree to better than 10%, then the calculation is regarded as valid.
Exact agreement cannot be expected because of the use of random numbers for
particle injection. There seems to be no way of ensuring that a multi-process
run uses the same random numbers for the same purposes as a single-process
run, therefore we can only expect approximate agreement on a statistical
basis.

"---

CASES



I This initial benchmark tape provides for two cases:

casel: a small MILO problem with 5 cavities and 12 blocks and about
100 particles, which has been used as a test calculation during
program development. It is small enough to run on any workstation
and give a reasonable real-time display when run on one processor.
It is too small, however, to make sensible use of a massively
parallel computer, and the speedup behavior will be disappointing.

case2: a moderately sized problem with 31 cavities and 64 blocks, 0
and about 12000 particles, which should be big enough to show
reasonable speedup behavior on a massively parallel computer.

a further case is planned:

case3: (to be created after further knowledge of and some experience
with the USAF MPP) a massive problem tuned to make the most of
the massively parallel computer being used.

DIRECTORIES

The following directories are provided on the benchmark tape, only the
first is needed for benchmarking

picpac2.d (7.4MB) LPM2 benchmarking directory, for iPSC
without graphics

The following may be used to demonstrate the program on a Sun

picsim.d (8.6MB) LPM2 benchmarking directory, for Sun
simulator and on-line (xgenie) graphics

the following directories are not needed for elementary benchmarking and
can usually be ignored. They may occasionally be needed to get out of
trouble:

ipscsim.d (4.5MB) iPSC simulator
lpmlibm.d (2.1MB) LPMl benchmark
XGENIE (1.6MB) source for xgenie graphics (not multiplexed)
XGENIE.NEW(I.3MB) ditto for multiplexed graphics

OPERATING INSTRUCTIONS (benchmark without graphics - UNIX commands) S

The files on tape are setup for benchmark runs on an Intel iPSC/860, which
may be run as follows:

(1) cd picpac2.d - go to benchmark directory
(2) cp casel.dat input.dat - copy casel 1-proc data to input.dat

- which is used as a working input file
(3) getcube -tl - get a cube of 1-processor
(4) sh host.sh - load and start running
(5) - results to screen and file o caselpl:l

(6) vi input.dat - edit line-2 to set NPRES-2, for 2 processes
change last character to number of processes

(7) getcube -t2 - -t2 gets 2 nodes
(8) sh host



(9) - results to screen and files:
o_caselp2:l (process 1)
o_caselp2:2 (process 2)

(10) repeat steps (6) to (9) for at least 10 different numbers of processes
(-NPRES), roughly equally spaced logarithmically:

e.g. 3,4,5,6,8,10,12,16,20,24,32,40,50,64 on 64-node .LPSC
The separate output files for each process are generated automatically

o_case<n>p<m>:<r>
output for process <r> from <m>-process run of case<n>

(11) cp case2.dat input.dat - bring-in case2 data for l-proc run 0
(12) repeat steps (3) to (10) using case2 data

Example output can be found in: picpac2.d/pac o_* and picsim.d/o_*

BENCHMARKING COMPLETE (casel and case2)

RECOMPILATION

The benchmark directory contains executables which have run on an iPSC/860,
and should be able to be used as described above. However if they do not
work, or if it is desired to recompile and link at a different level of
optimization, new executables can be produced as follows, using the UNIX
makefile facility. The following makefiles are provided:

makefile = the working makefile
makefile.iPSC = to make executables for an iPSC/860
makefile.sim = to make executables to use with the Intel

iPSC simulator, running on a SUN workstation
to use any of these:

cp makefile.iPSC makefile = setup for real iPSC
make - recompile and link all changed files

and produce executable called 'node'

The instructions above run a shell script called 'host.sh' to load the
executable 'node' onto all nodes and start execution. After all nodes have
finished the cube is released.

USING GRAPHICS

Two forms of graphics are possible:

(1) GHOST interface - Off-line graphics is provided if the Culham laboratory
Ghost graphics library is available. Each node can be
made to write a separate file of graphics instructions

that can be subsequently processed and viewed, using standard Ghost
interactive facilities.

(1.1) cp .FOROLIS.ghost .FORO LIS.inc removes ghost dummies
in cpslz.f

(1.2) cp lib lis.ghost lib lis.inc include ghost library
(1.3) cp makefile.iPSC makefile to use real iPSC
or (l.3a) cp makefile.sim makefile to use simulator
(1.4) make make new 'node' '
(1.5) operate as benchmark program above

The graphics output files generated are:

0



Sgcase<n>p<m>:<r>
ghost graphics grid file for process <r> from <m>-process run of zase<n>

(2) XGENIE interface - On-line graphics is provided via the xgenie daemon •
which is attached to the running host program via
a UNIX pipe. All nodes write coded graphics

instructions to the host program using standard Intel csend/crecv
instructions. After loading the node program onto the iPSC/860 nodes,
the host program goes into an endless loop reading coded graphics
instructions from the nodes, and sending them over the pipe to xgenie, 0
which plots them in an X-window, previously opened by the host. A
control-C ends the host program when required. This also kills the
nodes (usually!). The xgenie on-line graphics has been setup to run
with the SUN simulator in directory:

picsim.d

This may be used to demonstrate the paralellization of the program, but
cannot be used to obtain timing or performance numbers.

(2.1) cp .FOR 0 LIS.noghost .FOROLIS.inc inserts ghost dummies
(2.2) cp lib lis.noghost lib lis.inc no libraries required
(2.3) cp host.f.graf host.f host program + grafloop
(2.4) cp makefile.iPSC makefile to use real iPSC
or (2.4a) cp makefile.sim makefile to use simulator
(2.5) make make node program
(2.6) vi xgenie.h line 81 put correct directory path into

definition of DefaultServerPath to reach
picsim.d/xgenie. Use absolute path from root.

(2.7) make xgenieIF compile xgenie FORTRAN
interface routines

(2.8) make xgenie make xgenie daemon
(2.9) make host make host program

The program must be run from the host as follows, e.g.:

(2.10) cp casel.dat input.dat setup test input
(2.11) v. input.dat edit line-2 last character to 4
(2.11) getcube -t4 get 4 nodes
(2.12) host run host executable on host

X-window appears and device is drawn
100 step benchmark run is done

Final particle distribution displayed
(2.13) kill job with control-C

If particle trajectories are required as computation takes place,
uncomment line 155 (CALL SCAPLT) in c3sl.f (OUTPUT), and type 'make'.


